

Barracuda NextGen Firewall F-Series

Implementation Guide - NextGen Firewall in AWS

Barracuda Campus

© Barracuda Networks Inc., June 27, 2017. The information contained within this document is confidential and proprietary to Barracuda Networks Inc. No portion of this document may be copied, distributed, publicized or used for other than internal documentary purposes without the written consent of an official representative of Barracuda Networks Inc. All specifications are subject to change without notice. Barracuda Networks Inc. assumes no responsibility for any inaccuracies in this document. Barracuda Networks Inc. reserves the right to change, modify, transfer, or otherwise revise this publication without notice. Revision 100.

Table of Contents

AWS Implementation Guide

1.1	Implementation Guide - NextGen Firewall in AWS	9
1.1.1	Barracuda NextGen Firewall F Common Use Cases	9
1.1.2	Edge Firewall	9
1.1.3	Secure Remote Access	13
1.1.4	Office to Cloud / Hybrid Cloud	15
1.1.5	Segmentation	17

AWS Reference Architecture

2.1	NextGen Firewall High Availability Cluster with Route Shifting	21
2.1.1	Use Cases for a NextGen Firewall High Availability Cluster	21
2.1.2	Deploying a High Availability Firewall Cluster via CloudFormation Template	22
2.1.3	(Alternative) Deploying a High Availability Firewall Cluster via AWS Console	23
2.1.4	Cloud Integration for Route Shifting	23
2.1.5	Single Endpoint for Incoming Traffic: Route 53 or Elastic Load Balancer	25
2.1.6	Control Center-Managed NextGen Firewall High Availability Cluster	26
2.1.7	Create Access Rules	26
2.2	NextGen Firewall Auto Scaling Cluster	29
2.2.1	Use Cases for a NextGen Firewall Cold Standby Cluster	30
2.2.2	AWS Architectures for NextGen Firewall Auto Scaling Clusters	30
2.2.3	Deploying a NextGen Firewall Auto Scaling Cluster	32
2.2.4	Remote Access	33
2.2.5	Firewall and IPS	35
2.2.6	Configuration and Monitoring	35
2.2.7	Monitoring via NextGen Admin	38
2.2.8	Scaling Policies - Scheduled Actions	38
2.2.9	Scaling Policies - Dynamic Scaling	39
2.2.10	Installing Hotfixes	41
2.2.11	Firmware Update via CloudFormation Stack Update	41
2.2.12	Backup / Restore	42
2.2.13	Building Access Rules	42
2.3	NextGen Firewall Cold Standby Cluster	49
2.3.1	Use Cases for a NextGen Firewall Cold Standby Cluster	49
2.3.2	Deploying a NextGen Firewall Auto Scaling Cluster	50
2.3.3	Control Center-Managed NextGen Firewall Cold Standby Cluster	50
2.3.4	Login and Default Password	51

Table of Contents

Cold Standby Failover	52
Scaling Up or Scaling Down	53
Installing Hotfixes	53
Firmware Update via CloudFormation Stack Update	53
Site-to-Site VPN Tunnels for Cold Standby Clusters	54
Access Rules	55
Iransit VPC using NextGen Firewall	61
Use Cases for a NextGen Firewall Transit VPC	61
Deploying a Transit VPC via CloudFormation Templates	61
Connecting to On-Premises Networks	67
Segmentation Firewall for Single AZ VPCs	71
Use Cases for a Multi-NIC Segmentation Firewall	71
Limitations	72
Deploying a Segmentation Firewall via CloudFormation Template	72
(Alternative) Deploying a Segmentation Firewall via AWS Console	73
Adding Additional Network Interfaces for Each Private Subnet	73
Deploying Instances to Use the Firewall as Default Gateway	74
	Scaling Up or Scaling Down Installing Hotfixes Firmware Update via CloudFormation Stack Update Site-to-Site VPN Tunnels for Cold Standby Clusters Access Rules Transit VPC using NextGen Firewall Use Cases for a NextGen Firewall Transit VPC Deploying a Transit VPC via CloudFormation Templates Connecting to On-Premises Networks Segmentation Firewall for Single AZ VPCs Use Cases for a Multi-NIC Segmentation Firewall Limitations Deploying a Segmentation Firewall via CloudFormation Template (Alternative) Deploying a Segmentation Firewall via AWS Console Adding Additional Network Interfaces for Each Private Subnet

Step-by-Step Guides

3.1	How to Create an IAM Role for an F-Series Firewall in AWS	79
3.2	How to Configure Log Streaming to AWS CloudWatch	87
3.2.1	Before You Begin	87
3.3	How to Restore a Configuration on a PAYG Firewall in the Public Cloud	93
3.3.1	Before You Begin	93
3.4	How to Add AWS Elastic Network Interfaces to a Firewall Instance	95
3.4.1	AWS Reference Architectures	95
3.4.2	Before You Begin	95
3.4.3	Next Steps	100
3.5	How to Configure AWS Route Tables for Firewalls with Multiple Network Interfaces	101
3.5.1	AWS Reference Architectures	101
3.5.2	Before You Begin	101
3.6	How to Modify CloudFormation Templates to Retrieve the PAR File from a Control Center	105
3.6.1	Before You B egin	105
3.6.2	Next Steps	110

Table of Contents

3.7 3.7.1	How to Create a TINA VPN Tunnel between F-Series Firewalls Next Step	111 117
3.8 3.8.1	How to Create a Geo Location based Network Object Create a Network Object	119 119
3.9 3.9.1	How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP Before You Begin	121 121
3.10 3.10.1 3.10.2	How to Deploy an F-Series Firewall in AWS via CloudFormation Template CloudFormation Templates Before You Begin	139 139 139
3.11 3.11.1	How to Deploy an F-Series Firewall in AWS via Web Portal Next Steps	143 154
3.12 3.12.1	How to Deploy a NextGen Firewall Auto Scaling Cluster in AWS AWS Reference Architectures	155 156
3.13	How to Configure Scaling Policies for a NextGen Firewall Auto Scaling Cluster	161
3.14 3.14.1 3.14.2	How to Configure an AWS Elastic Load Balancer for F-Series Firewalls in AWS AWS Reference Architectures Create an AWS Load Balancer	165 165 165
3.15	How to Configure Route 53 for F-Series Firewalls in AWS	169
3.15.1	Alternative	169
3.15.2	Before You Begin	169
3.16	How to Configure a Client-to-Site VPN Group Policy for a NextGen Firewall Auto	Scaling
	Cluster in AWS	175
3.16.1	Supported Clients	175
3.16.2	Before You Begin	175
3.16.3	Configure a Custom Login Message	181
3.16.4	Troubleshooting	181
3.16.5	Next Steps	181
3.17	How to Configure the SSL VPN Services for AWS Auto Scaling Clusters	183
3.17.1	Before You Begin	183
3.17.2	Troubleshooting	188

AWS Implementation Guide

1.1	Implementation Guide - NextGen Firewall in AWS	9
1.1.1	Barracuda NextGen Firewall F Common Use Cases	9
1.1.2	Edge Firewall	9
1.1.3	Secure Remote Access	13
1.1.4	Office to Cloud / Hybrid Cloud	15
1.1.5	Segmentation	17

1.1 Implementation Guide - NextGen Firewall in AWS

Amazon Web Services follows the shared security responsibility model. AWS is responsible for security of the cloud. This includes physical security, servers, networking hardware, and the hypervisor. The customer, on the other hand, is responsible for everything running in the cloud, such as securing and managing the operating system, network configuration, data, and connections to the cloud.

The Barracuda NextGen Firewall F is a next generation firewall built to integrate seamlessly with the AWS cloud platform. The flexibility of the NextGen Firewall allows cloud architects to easily select a reference architecture by the intended use case and size of the workload. A CloudFormation template is supplied with each reference architecture, making it easy to deploy or integrate with your current cloud resources. The NextGen Firewall adds network layer security controls, visibility, and connectivity to your cloud network. Depending on the use case, NextGen Firewall deployment is selected to satisfy the correct balance among the following criteria:

- Support for required firewall features such as firewalling or VPN
- High availability
- Scalability
- Cost optimization
- Failover or recovery times

1.1.1 Barracuda NextGen Firewall F Common Use Cases

- Edge Firewall
- Secure Remote Access
- Office to Cloud / Hybrid Cloud
- Segmentation

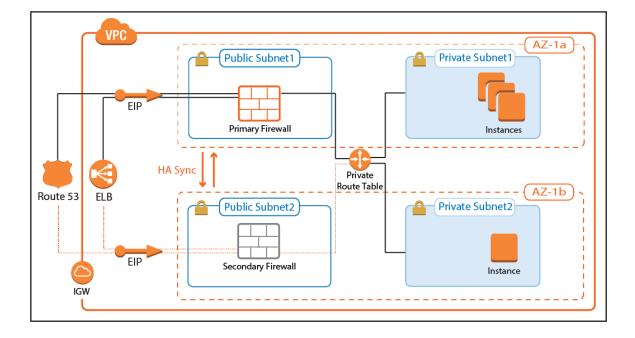
1.1.2 Edge Firewall

Common use cases:

- Network security enforcement with firewall and IPS.
- Default (outbound) gateway for cloud resources in the same VPC.

Traffic	IPS	
IGW	Firewall	J

The NextGen Firewall secures access to the AWS cloud resources from the Internet by enforcing granular firewall access

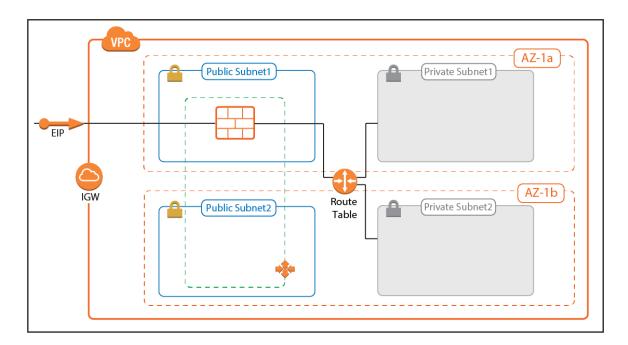

policies and scanning incoming traffic for malware and exploits. The next generation firewall features replace or extend the

native AWS security groups and NACLs by:

- Protecting against network-based attacks and exploits with the built-in IPS
- Virus scanning and Advanced Threat Protection (ATP) (BYOL only)
- Geolocation-based access control
- Traffic Shaping (QoS) to protect business-critical traffic.

NextGen Firewall High Availability Cluster with Route Shifting

- High Availabilty Yes
- Failover / Recovery time Seconds to minutes, depending on the AWS API
- Auto Scaling No
- Default Gateway for instances in the VPC Yes

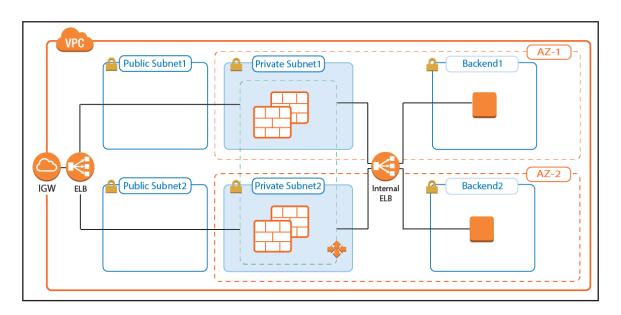


The NextGen Firewall High Availability Cluster supports all firewalling and the default gateway features required to act as an edge firewall. The firewalls are in an active-passive cluster that syncs session information and configurations. All outgoing traffic from the private subnets is routed over the active firewall. In the event of a failover, the passive firewall takes over and connects to the cloud fabric to rewrite all routes to use the now-active firewall in the High Availability Cluster as the target. Routes added after deployment that use the firewall as the gateway are automatically detected and, in the case of a failover, are also rewritten.

For more information, see 2.1 NextGen Firewall High Availability Cluster with Route Shifting (page 21)

NextGen Firewall Cold Standby Cluster

- High Availabilty No
- Failover / Recovery time Multiple minutes
- Auto Scaling No
- Default Gateway for instances in the VPC Yes, with manual changes required for new routes.

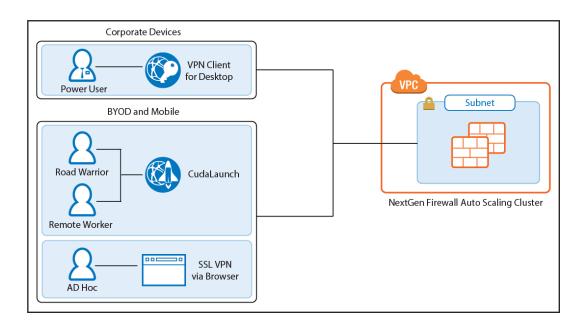


The Cold Standby Cluster is a cost-effective solution that offers the full range of next generation firewall features. In case the firewall instance becomes unresponsive, the firewall instance is automatically replaced. Routes for the private subnets are rewritten, but must be adjusted manually in the CloudFormation template to match your architecture. Route tables are not monitored automatically; additional routes or changes to existing routes must be completed by first updating the template and then updating the CloudFormation stack.

For more information, see 2.3 NextGen Firewall Cold Standby Cluster (page 49)

NextGen Firewall Auto Scaling Cluster

- High Availabilty Yes
- Failover / Recovery time Instant
- Auto Scaling Yes
- Default Gateway for instances in the VPC No, source NAT is required for inbound traffic.

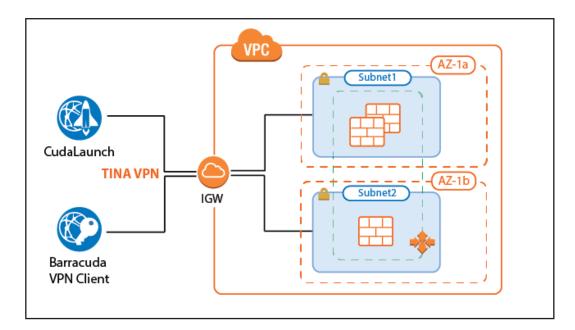

Sizing the firewall for highly dynamic traffic can be difficult. You can easily incur unnecessary costs for instances that are too large, or else you can run the risk of creating bottlenecks in your architectures if the firewall cannot keep up with current demand. The NextGen Firewall Auto Scaling Cluster scales automatically to match your workload. One or more Elastic Load Balancers distribute traffic over the firewall instances in the Auto Scaling group. Custom Firewall metrics collected by CloudWatch allow custom-tailored scaling policies that match your cloud applications. Since the source IP address must be rewritten on the firewall, the NextGen Firewall Auto Scaling Cluster cannot be used as a default gateway for outbound traffic for instances in the private networks.

For more information, see 2.2 NextGen Firewall Auto Scaling Cluster (page 29)

1.1.3 Secure Remote Access

Common use cases:

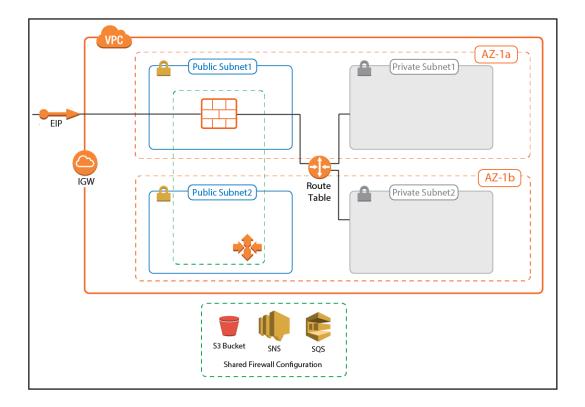
- Remote access for unknown or highly dynamic workloads.
- · Remote access for predictable workloads.


Remote access features offer remote users secure access to their organization's cloud applications and resources from virtually any device. Depending on the workload, full client-to-site VPN or SSL VPN are available, with CudaLaunch offering a richer level of remote access spanning both client-to-site and SSL VPN.

For power users, or users with centrally managed corporate devices, the client-to-site VPN offers transparent access to the corporate network. The Barracuda VPN client uses the TINA VPN protocol, specifically designed for robust VPN connections. VPN clients can be authenticated through client certificates, external and internal authentication schemes, or a combination thereof.

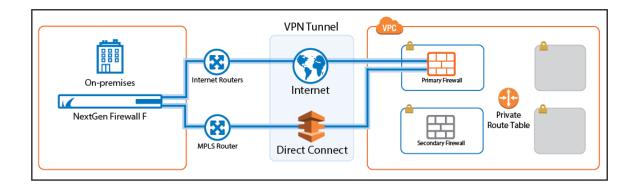
The SSL VPN service provides seamless integration without having to install a client app. CudaLaunch works with the SSL VPN service to provide more advanced SSL VPN features such as SSL tunneling or native app support. The number of simultaneous users using the SSL VPN is limited only by the performance of the AWS instances.

NextGen Firewall Auto Scaling Cluster


Remote access workloads tend to be cyclical in nature. Remote workers sign in with their VPN clients in the morning, and disconnect at the end of their work day. By using a NextGen Firewall Auto Scaling Cluster, the number of firewalls is scaled automatically to meet the current demand. The cluster can also be scaled according to a schedule, depending on how predictable the workload is. The firewall instances are automatically deployed into two or more Availability Zones. Custom firewall and VPN metrics collected by AWS CloudWatch allow the admin to configure customized scaling policies. Auto Scaling is limited to the PAYG images of the Barracuda NextGen Firewall F.

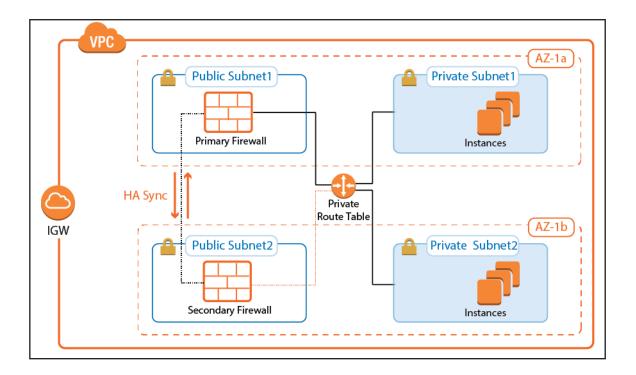
For more information, see 2.2 NextGen Firewall Auto Scaling Cluster (page 29)

NextGen Firewall Cold Standby Cluster


For a small number of remote users with predictable traffic patterns, the Cold Standby Cluster is a very cost-effective remote access solution. The single firewall running is automatically replaced within minutes after a failure. The configuration is stored on an S3 bucket and can optionally be fetched from a NextGen Control Center. Using a Control Center allows for the use of BYOL pool licenses for the instance. For single firewalls, the PAYG image is used. Cold Standby Clusters must be scaled up manually to meet increased demand.

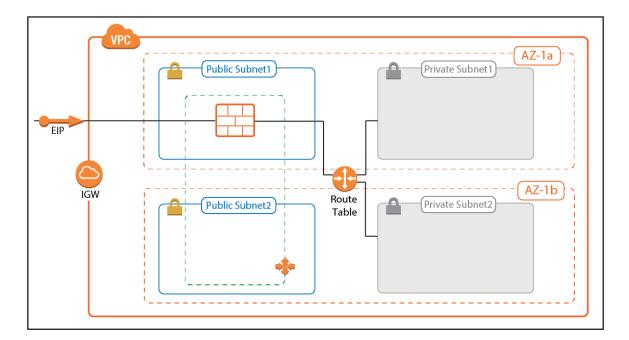
1.1.4 Office to Cloud / Hybrid Cloud

Common use cases:


- Hybrid cloud using site-to-site VPN.
- Default (outbound) gateway for cloud resources.
- Secure traffic on the Direct Connect MPLS line.

Create site-to-site VPN connections to transparently connect your on-premises networks with your applications and services hosted in the cloud. For VPN tunnels using the proprietary TINA VPN protocol, Traffic Intelligence allows you to split a VPN tunnel into up to 24 VPN transports, each using a different WAN connection to the firewall in the cloud. For the user, this happens completely transparently. In addition, Traffic Intelligence allows you to route traffic dynamically based on bandwidth or latency requirements. Offloading traffic to cheaper connections allows to you use smaller bandwidth Direct Connections, or to increase the quality for business-critical or latency-sensitive information.

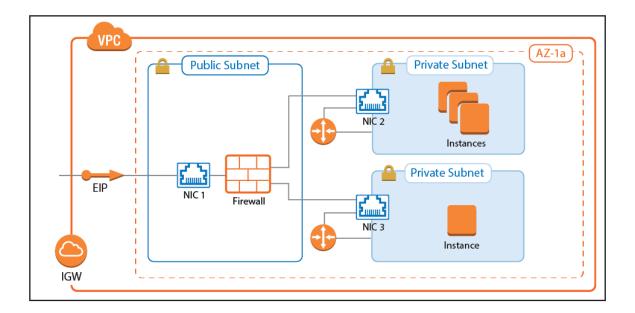
NextGen Firewall High Availability Cluster


The NextGen Firewall High Availability Cluster supports both TINA and IPsec IKEv1 and IKEv2 site-to-site VPN tunnels. For IPsec tunnels, Route 53 must be used for incoming traffic since the Elastic Load Balancer does not support UDP. Optionally, a NextGen Control Center can be used to retrieve and manage the firewall configuration and to monitor the remote firewalls in one central location. If only TINA VPN tunnels are used, no incoming load balancing is required since TINA VPN tunnels can be configured to use two public IP addresses as the VPN endpoint. NextGen Firewall High Availability Clusters must be scaled up manually if the workload increases.

For more information, see 2.1 NextGen Firewall High Availability Cluster with Route Shifting (page 21)

NextGen Firewall Cold Standby Cluster

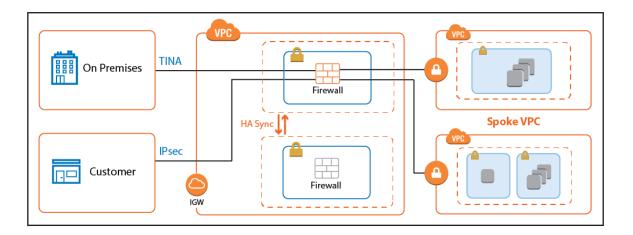
The NextGen Firewall Cold Standby Cluster supports the same VPN features as the High Availability Cluster. The single firewall instance runs in an Auto Scaling group of one with the firewall configuration stored on an S3 bucket. In case the firewall becomes unavailable, it is automatically replaced. By default, only PAYG licenses are supported. However, it is possible to use a NextGen Control Center to manage the firewall. This allows for the use of BYOL pool licenses. The Cold Standby Cluster must be sized to meet peek demand because it does not scale dynamically.


1.1.5 Segmentation

Common use cases:

• Provide network segmentation (INS) in the cloud.

Segmentation Firewall for Single AZ VPCs


Traditional network security approaches rely heavily on network segmentation to secure the network with internal firewalls that allow only defined traffic between the different services and networks. When these on-premises applications are migrated to the cloud, the internal firewall is replaced by a NextGen Firewall with multiple network interfaces. This allows the application to be moved to the cloud without a costly and time-consuming revamp of the architecture. Firewall access rules and the next generation firewall capabilities provide fine-grained security policies and real-time traffic visibility. Since the Elastic Network Interfaces attached to the firewall instance must be in the same Availability Zone, this solution is limited to single AZ applications.

For more information, see 2.5 Segmentation Firewall for Single AZ VPCs (page 71)

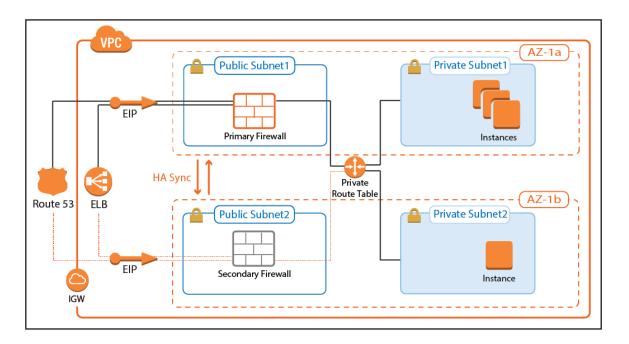
Transit VPC

For cloud-native applications to take full advantage of the AWS cloud platform, each application is hosted in a dedicated VPC. This allows the application to be the logical context for segmentation. To organize and secure these highly dynamic VPCs, connect them in a hub and spoke architecture, with a firewall cluster in the central Transit VPC. The Transit VPC architecture is very flexible: it can be combined with High Availability Clusters, Cold Standby Clusters, or Auto Scaling Clusters, depending on the workload and predominant use case.

For more information, see 2.4 Transit VPC using NextGen Firewall (page 61)

AWS Reference Architecture

2.1	NextGen Firewall High Availability Cluster with Route Shifting	21
2.1.1	Use Cases for a NextGen Firewall High Availability Cluster	21
2.1.2	Deploying a High Availability Firewall Cluster via CloudFormation Template	22
2.1.3	(Alternative) Deploying a High Availability Firewall Cluster via AWS Console	23
2.1.4	Cloud Integration for Route Shifting	23
2.1.5	Single Endpoint for Incoming Traffic: Route 53 or Elastic Load Balancer	25
2.1.6	Control Center-Managed NextGen Firewall High Availability Cluster	26
2.1.7	Create Access Rules	26
2.2	NextGen Firewall Auto Scaling Cluster	29
2.2.1	Use Cases for a NextGen Firewall Cold Standby Cluster	30
2.2.2	AWS Architectures for NextGen Firewall Auto Scaling Clusters	30
2.2.3	Deploying a NextGen Firewall Auto Scaling Cluster	32
2.2.4	Remote Access	33
2.2.5	Firewall and IPS	35
2.2.6	Configuration and Monitoring	35
2.2.7	Monitoring via NextGen Admin	38
2.2.8	Scaling Policies - Scheduled Actions	38
2.2.9	Scaling Policies - Dynamic Scaling	39
2.2.10	Installing Hotfixes	41
2.2.11	Firmware Update via CloudFormation Stack Update	41
2.2.12	Backup / Restore	42
2.2.13	Building Access Rules	42
2.3	NextGen Firewall Cold Standby Cluster	49
2.3.1	Use Cases for a NextGen Firewall Cold Standby Cluster	49
2.3.2	Deploying a NextGen Firewall Auto Scaling Cluster	50
2.3.3	Control Center-Managed NextGen Firewall Cold Standby Cluster	50
2.3.4	Login and Default Password	51
2.3.5	Cold Standby Failover	52
2.3.6	Scaling Up or Scaling Down	53
2.3.7	Installing Hotfixes	53
2.3.8	Firmware Update via CloudFormation Stack Update	53
2.3.9	Site-to-Site VPN Tunnels for Cold Standby Clusters	54
2.3.10	Access Rules	55
2.4	Transit VPC using NextGen Firewall	61
2.4.1	Use Cases for a NextGen Firewall Transit VPC	61
2.4.2	Deploying a Transit VPC via CloudFormation Templates	61
2.4.3	Connecting to On-Premises Networks	67


AWS Reference Architecture

2.5	Segmentation Firewall for Single AZ VPCs	71
2.5.1	Use Cases for a Multi-NIC Segmentation Firewall	71
2.5.2	Limitations	72
2.5.3	Deploying a Segmentation Firewall via CloudFormation Template	72
2.5.4	(Alternative) Deploying a Segmentation Firewall via AWS Console	73
2.5.5	Adding Additional Network Interfaces for Each Private Subnet	73
2.5.6	Deploying Instances to Use the Firewall as Default Gateway	74

2.1 NextGen Firewall High Availability Cluster with Route Shifting

To build highly available services in AWS, each layer of your architecture should be redundant over multiple Availability Zones. Each AWS region is made up of at least two isolated Availability Zones. In case one Availability Zone goes down, your application continues to run in the other datacenter without interruption or even minimal failover time. For the Barracuda NextGen Firewall, this means deploying two firewall instances to two public subnets, each in a different Availability Zone. The firewalls are in an active-passive cluster. Both firewalls share a virtual server containing such services as the Forwarding Firewall or VPN service. Should the primary firewall become unavailable, the virtual server is immediately started on the secondary firewall. The now-active secondary firewall connects to the underlying cloud platform and rewrites the routes in the AWS route table to use the now-active firewall as the gateway device for the backend instances. After the route table is rewritten, normal operations are resumed, even if one of the two Availability Zones is experiencing an outage. Failing over the virtual server, although fast, is not transparent to the user. Existing connections will time out.

High Availability Clusters must be sized for the expected peak load. If the expected workload is dynamic in nature and a default gateway is not required, use a NextGen Firewall Auto Scaling cluster instead.

2.1.1 Use Cases for a NextGen Firewall High Availability Cluster

- Site-to-Site VPN One way on-premises to AWS, TINA, and IPsec site-to-site VPN tunnels.
- Edge Firewall Scan for malicious traffic using the built-in IPS and handle access to resources via access rules.
- Secure Remote Access Client-to-site VPN, CudaLaunch, and SSL VPN using TINA, SSL VPN, and IPsec VPN protocols.

2.1.2 Deploying a High Availability Firewall Cluster via CloudFormation Template

It is recommended to deploy the High Availability Cluster via a CloudFormation template. The template deploys two firewalls that are automatically joined into the High Availability Cluster in the public subnets. The route table associated with the private subnets is configured to use the active firewall as the outbound gateway.

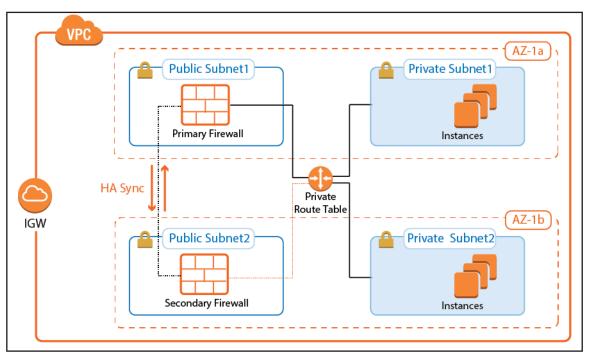
1. Create an IAM role for the firewall cluster. For step-by-step instructions, see

3.1 How to Create an IAM Role for an F-Series Firewall in AWS (page 79)

Download the **NGF_HA.json** template and parameter file from the Barracuda Network GitHub account:

https://github.com/barracudanetworks/ngf-aws-templates.

- 2. Accept the Software Terms for the Barracuda NextGen Firewall PAYG or BYOL image in the AWS Marketplace.
- 3. Create a parameter template file containing your parameters values.
- 4. Deploy the NGF_HA.json CloudFormation template via AWS CLI or AWS console.


aws cloudformation create-stack --stack-name "YOUR_STACK_NAME" --template-body YOUR_S3_BUCKET/NGF_HA.json --parameter YOUR_S3_ BUCKET/NGF_HA_parameters.json

During deployment, the following resources are created by the template:

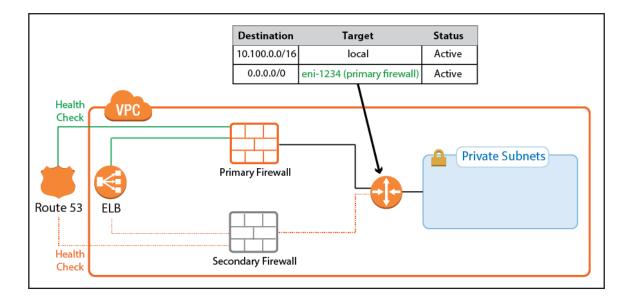
- Two public and two private subnets in a VPC. The subnets are spread out over multiple Availability Zones.
- Two NextGen Firewall (PAYG or BYOL) instances joined together into a High Availability Cluster.
- One Elastic Load Balancer.

For step-by-step instructions, see 3.10 How to Deploy an F-Series Firewall in AWS via CloudFormation Template (page 139)

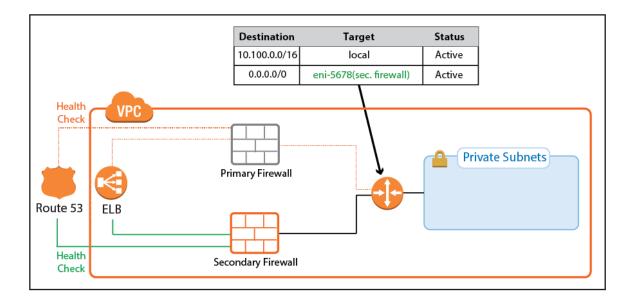
2.1.3 (Alternative) Deploying a High Availability Firewall Cluster via AWS Console

To deploy a NextGen Firewall High Availability Cluster via AWS Console, follow these basic steps:

- 1. Create an IAM role for your firewall instances.
- 2. Create a VPC and add two public and private subnets in two Availability Zones.
- 3. Attach an Internet gateway and associate one route table with the public subnets, the second with the private subnets.
- 4. Launch one firewall instance into each public subnet. Both firewalls require public IP addresses.
- 5. Disable the source/destination check for each firewall.
- 6. Add routes to the route table to allow the public subnets Internet access and the private subnets to route over the active firewall instance.
- 7. Join the two firewalls into an High Availability Cluster.
- 8. Add an Elastic Load Balancer or configure Route 53.


For step-by-step instructions, see How to Configure a Multi-AZ High Availability Cluster in AWS using the Web Portal and How

to Set Up a High Availability Cluster.


2.1.4 Cloud Integration for Route Shifting

Cloud Integration allows the firewall instance to use API calls to the underlying cloud platform authenticating by using the IAM role supplied during deployment. Cloud Integration is used to populate the cloud information element in the NextGen Admin dashboard and, more importantly, to rewrite AWS route tables. Rewriting the VPC route tables is necessary every time the virtual server fails over. During the failover, the now-active firewall rewrites the target of every route to use the active firewall running the virtual server services. This works for all route tables in the VPC. The active firewall continues to poll the route tables to ensure that the active firewall is always used.

Primary Firewall Active

Secondary Firewall Active

On the firewall, go to **CONTROL > Network > AWS Routes**. All the route tables for the VPC are listed. Routes that use one of the firewalls are shown with a green icon. During takeover, the icon temporary turns red to indicate that a failover is in progress. After the route table rewrite, the network interface ID (eni-123456) matches the now-active firewall.

Interfa	aces/IPs	IPs	Interfaces	Proxy ARPs	ARPs	Statistics	OSPF	RIP	BGP	Switch Info	IPv6 ND Cach	e AWS Routes
Table	/ Prefix			Next Hop	о Туре			Nex	t Hop Ga	teway		
	rtb-fl	od90293	3 (DOC-Tra	nsitVPC-Rou	ıteT abl	ePublic)						
	-0	0.100.0.	0/16	local				loca	al			
		0.0.0.0/0		internet				igw	-0507486	6c (DOC-Trans	itVPC-Hubl	
.	rtb-e	9d9028	1									
	-0	0.100.0.	0/16	local				loca	al			
rtb-ee548f86 (DOC-TransitVPC-RouteTablePrivate)												
	-0	0.100.0.	0/16	local				loca	al			
	🕑 (0.0.0.0/0		gateway				eni-	558afb3	3 (DOC-Transit	VPC-NGF1)	

2.1.5 Single Endpoint for Incoming Traffic: Route 53 or Elastic Load Balancer

Using two public IP addresses for the active-passive High Availability Cluster may not always be possible. To use a single FQDN that always sends traffic over the active firewall, you can use either a classic Elastic Load Balancer or Route 53. Both services are similar in that they use health checks and send traffic to the healthy destination. For TCP-only services, either service can be used. For UDP-based services, such as IPsec, use Route 53.

Classic Elastic Load Balancer

The classic Elastic Load Balancer is a managed layer 4 TCP load balancer. The load balancer can only be addressed by the DNS name associated with it. It is not possible to work with the IP address the hostname resolves to directly because the underlying load balancing instances may change at any time.

The Elastic Load Balancer is responsible for distributing traffic to all healthy instances it is associated to. To make sure that traffic is sent only to the active firewall, define the health check for a service on the virtual service. For example, use TCP:691 as the health check target if a VPN service is running on the virtual server. The load balancer continuously polls the VPN service and considers the instance healthy if the TCP connection succeeds. Since the virtual server is running only on the active firewall, the health check always fails for the passive firewall. The passive firewall is considered unhealthy, and no traffic is forwarded to this instance by the load balancer.

Traffic passing through an Elastic Load Balancer rewrites the source IP address to that of the load balancer instance. If your application requires the public IP address of the client, use Route 53 instead.

For step-by-step instructions, see

3.14 How to Configure an AWS Elastic Load Balancer for F-Series Firewalls in AWS (page 165)

Route 53

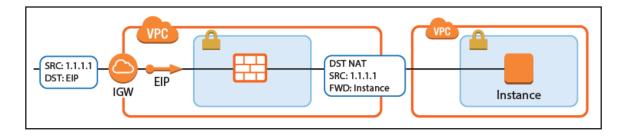
Route 53 is an authoritative DNS service by AWS. Route 53 allows you to monitor endpoints and change the returned record set according to the state of the health check. Create a health check for a service running on the virtual server of your High Availability Cluster. Create two record sets using a failover routing policy and attach the health check to the primary firewall. No distinct health check is created for the secondary firewall. If everything fails, it is better to attempt to reach at least one firewall in the cluster than to return nothing at all. The secondary firewall is also a better choice as a fail-safe because the default behavior of a High Availability Cluster favors the secondary firewall. For example, if both the primary and secondary firewall start the virtual server at the same time, the secondary firewall continues to run while the primary firewall shuts the virtual server down.

For step-by-step instructions, see 3.15 How to Configure Route 53 for F-Series Firewalls in AWS (page 169)

2.1.6 Control Center-Managed NextGen Firewall High Availability Cluster

The NextGen Control Center is a central management appliance for the F-Series Firewall that can be deployed as a virtual appliance on-premises or in the cloud. Managing the High Availability Cluster with a NextGen Control Center separates the firewall configuration and monitoring from deployment and integration with other AWS services. This is especially useful for highly specialized or large departments with dedicated network security teams and multiple developer teams using automatic deployments. Managed firewalls are preconfigured on the Control Center. During provisioning of the firewall instance, the firewall configuration and, optionally, licenses are automatically retrieved from the Control Center. To use BYOL licenses bound to Control Center are used instead of single BYOL licenses bound to the EC2 instance of the firewall. Pool licenses are available in multiples of 5.

For step-by-step instructions, see


3.6 How to Modify CloudFormation Templates to Retrieve the PAR File from a Control Center (page 105) For more information, see NextGen Control Center and Central Management.

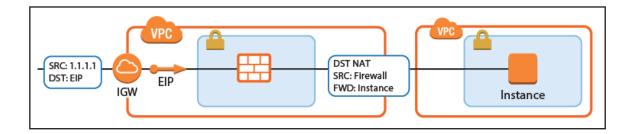
2.1.7 Create Access Rules

By default, the Forwarding Firewall service blocks all traffic. To allow traffic through the firewall, you must create access rules with an allow action, such as Pass or Dst NAT. When creating the rules, make sure you create them so they will match the same type of traffic independent of which virtual server the firewall service is running on. For Dst NAT and App Redirect rules, enter both the management IP address of the primary and secondary firewalls, or use the **All Firewall IPs**. For step-by-step instructions, see Access Rules.

Internet to Backend Services Using the Firewall as the Default Gateway

Create the following access rule to forward traffic from the Internet to an internal web server, where the web server uses the firewall as the default gateway.

- Action Select Dst NAT.
- Source Select the source depending on how traffic is routed to the firewall:
 - Through an ELB Select Any or the network object containing the networks the ELB is deployed in.
 - Through Route 53 / Elastic IP Select Internet.


- Destination Select DHCP1 Local IP.
- Connection Method Select Original Source IP.
- Redirection Target Enter the IP address of the backend service. Optionally, append the port number to redirect to a

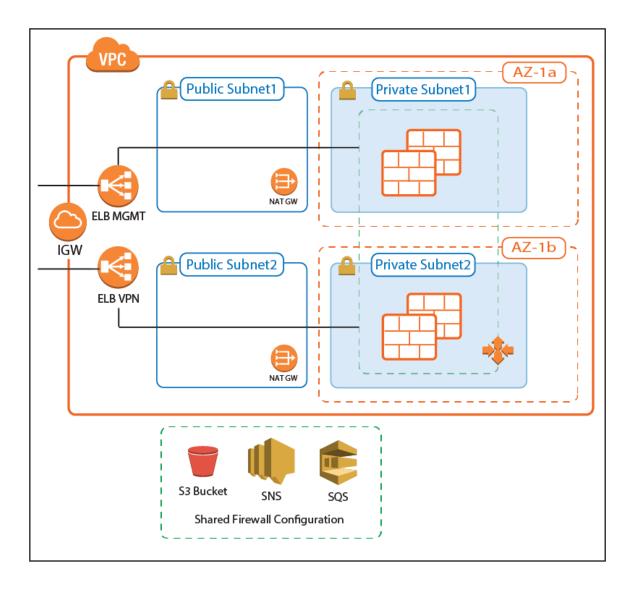
different port. e..g, 10.100.1.2 or 10.100.1.2:8080

	INET-	to-WebSRVs					
Dst NAT V							
📣 🗌 Bi-Directional		\delta 🗌 Dynamic Rule		🕘 🗌 Deactivate Rule			
Source		Service		Destination			
Internet	~	HTTP+S	~	DHCP1 Local IP	~		
Ref: Any		Ref: HTTP					
NOT 10.0.0/8		Ref: HTTPS					
NOT 172.16.0.0/12							
NOT 192.168.0.0/16				Redirection	_		
				Target List	Reference		
				10.100.1.2:8080			
				Fallback	\sim		
				List of Critical Ports			
Authenticated User		Policies		Connection Method			
Any	~	IPS Policy		Original Source IP	~		
		Default Policy	\sim				
		Application Policy		Original Source IP (san	ne port)		
		No AppControl					
		Schedule					
		Always	~				
		QoS Band (Fwd)					
		VoIP (ID 2)	\sim				
		QoS Band (Reply)					
		Like-Fwd	\sim				

Internet to Backend Services not Using the Firewall as the Default Gateway

Create the following access rule to forward traffic from the Internet to an internal web server.

- Action Select Dst NAT.
- **Source** Select the source depending on how traffic is routed to the firewall:
 - Through an ELB Select Any or the network object containing the networks the ELB is deployed in.
 - Through Route 53 / Elastic IP Select Internet.
- Service Select the service. e.g., HTTP+S.
- Destination Select DHCP1 Local IP.
- Connection Method Select Dynamic NAT or Translated from DHCP Interface.


Redirection Target – Enter the IP address of the backend service. Optionally, append the port number to redirect to a

different port. e..g, 10.100.1.2 or 10.100.1.2:8080

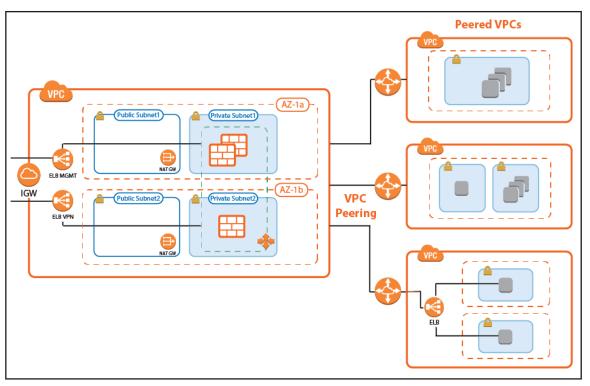
	INET-to-WebSRVs							
Dst NAT V								
📣 🗌 Bi-Directional		\delta 🗌 Dynamic Rule		🕘 🗌 Deactivate Rule				
Source		Service	I	Destination				
Any	~	HTTPS	~	DHCP1 Local IP	~			
0.0.0/0		TCP 443 https Report if not (SSL)						
			F	Redirection				
			Т	Target List	Reference 🗌			
				10.100.1.2:8080				
				Fallback	\sim			
				ist of Critical Ports				
Authenticated User		Policies	[Connection Method				
Any	~	IPS Policy	Γ	Translated IP from DHCP				
		Default Policy	-	Network Interface	Interface -			
		Application Policy		dhcp				
		AppControl, URL.Fil		uncp				
		Schedule	-					
			_					
		QoS Band (Fwd)						
		VoIP (ID 2)	~					
		QoS Band (Reply) Like-Fwd						
		LIKE-TWU	× [

2.2 NextGen Firewall Auto Scaling Cluster

Protecting highly dynamic AWS resources with a static firewall setup is neither efficient nor economical. A NextGen Firewall Auto Scaling Cluster scales with demand, thereby creating a cost-effective, robust solution for securing and connecting to your cloud resources. The firewall cluster can be deployed either to integrate with existing resources in an AWS region, or as part of an auto scaling application. Both options offer an integrated Barracuda Web Application Firewall (WAF) as a second security tier. The firewall cluster integrates tightly with AWS services and APIs. Configuration changes are synchronized securely over the AWS backend, with all instances sharing the same configuration. The admin can configure the changes like a single firewall instance. The firewall cluster is highly available and scalable over multiple AWS Availability Zones, without any single point of failure such as additional management or worker node instances. The firewall cluster uses the PAYG image of the Barracuda NextGen Firewall in the AWS Marketplace. This allows you to quickly deploy without the need for long-term licensing commitments. NextGen Firewall clusters cannot be managed by a NextGen Control Center.

2.2.1 Use Cases for a NextGen Firewall Cold Standby Cluster

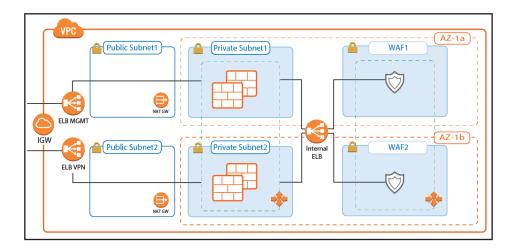
- Secure Remote Access Client-to-site VPN, CudaLaunch, and SSL VPN using the TINA VPN protocol.
- Edge Firewall Scan for malicious traffic using the built-in IPS and handle access to resources via access rules.


2.2.2 AWS Architectures for NextGen Firewall Auto Scaling Clusters

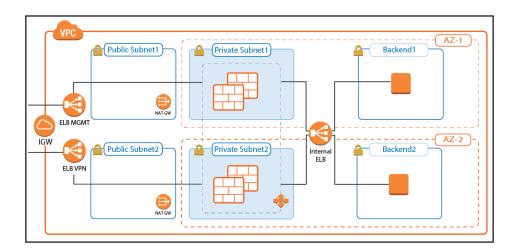
Since there are no external dependencies, the NextGen Firewall cluster can either be used as a drop-in solution to protect your existing applications in the same AWS region, or it can be included as part of the architecture of your application.

Transit VPC with VPC Peering

The firewall cluster is used in a Transit VPC configuration. The firewall VPC acts as a hub securing all traffic in and out of the peered VPCs. Two peered VPCs must be in the same AWS region, but can be in different AWS accounts. Transitive peering is not possible; therefore, resources in two VPCs both peered with the Transit VPC cannot communicate with each other. Incoming traffic is handled via access rules allowing access to the backend resources based on the access rule matching criteria, such as source, user, or time. Since the VPC for the firewall cluster is separated from the VPCs containing the applications, rapid iteration of the applications is possible without requiring changes to the firewall cluster. For example, in a typical scenario with production, engineering, and development VPCs, granular access rules allow the firewall admin to separate users based on their role:


- Traffic to production VPCs is secured by IPS and, optionally, forwarded to a Web Application Firewall cluster.
- QA and developers log in via client-to-site VPN. The firewall uses the user information to allow access only to their respective VPCs.

• Admins are in a special group, allowing them backend access to production and QA VPCs.


Transit VPC with VPC Peering and Barracuda Web Application Firewall Auto Scaling Cluster

A variation of the transit VPC includes an additional Web Application Firewall cluster behind the NextGen Firewall cluster. The Barracuda Web Application Firewall and NextGen Firewall F can work in tandem to block IP addresses from which malicious activity was detected. Whereas the WAF is very good at detecting application layer attacks, the NextGen Firewall is more efficient on the network layer. Connections blocked by the firewall IPS are never forwarded to the WAF, thereby freeing resources that would otherwise have to be used to block known-bad connections.

Integration into AWS Architecture

You can integrate the firewall cluster into your existing architecture. Use the default CloudFormation template as reference. To be able to reuse the configuration, configure the NextGen Firewall cluster one time via NextGen Admin, and then replicate the S3 bucket to reuse the configuration.

2.2.3 Deploying a NextGen Firewall Auto Scaling Cluster

The firewall cluster must be deployed via CloudFormation template. The template deploys a VPC with public and private subnets in two Availability Zones. In the private subnets, the firewall cluster is deployed. In the public subnets, the Elastic Load Balancer (ELB) and two NAT gateways are deployed (one for each Availability Zone). The NAT gateways are required for the firewalls to be able to access the AWS backend. APIs are required to enable the secure configuration sync over the AWS backend.

Create an IAM role for the firewall cluster. For step-by-step instructions, see 3.1 How to Create an IAM Role for an F-Series

Firewall in AWS (page 79)

Download the NGF_Autoscaling.json template and parameter file from the Barracuda Network GitHub account:

https://github.com/barracudanetworks/ngf-aws-templates.

Accept the Software Terms for the Barracuda NextGen Firewall PAYG image in the AWS Marketplace.

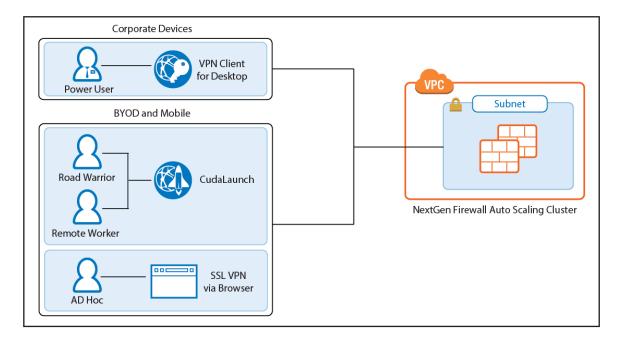
Create a parameter template file containing your parameters values.

Deploy the **autoscale.json** CloudFormation template via AWS CLI or AWS console.

aws cloudformation create-stack --stack-name "YOUR_STACK_NAME" --template-body YOUR_S3_BUCKET/NGF_Autoscaling.json --parameter YOUR_S3_BUCKET/NGF_Autoscaling_ parameters.json

During deployment, the following resources are created by the template:

- VPC with private and public subnets in two Availability Zones.
- Two ELBs: one for management connections, the other for VPN and SSL VPN services.
- One S3 bucket.
- Automatically created SNS and SQS queues.
- Two NAT gateways.
- A Launch Configuration and Auto Scaling group for the firewall. The Barracuda NextGen Firewall PAYG image must be used.
- Scaling policies using the number of client-to-site VPN tunnels.


After stack creation is complete, the FQDN of the ELB are listed in the **Output** tab.

Cloud	CloudFormation Stacks									
Create Stac	k 🔽 A	ctions -	Desig	n template						
Filter: Activ	ve ▼ DOC		,	¢						
Stack I	Stack Name Created Time				Status			Description		
DOC-A	DOC-ASG02 2017-05-23 14:29:36 UTC+			+0200	CREATE	_COMPL	ETE			
					11	17	10			
Overview	Outputs	Resources	Events	Template	Parame	ters Tag	js Sta	ack Policy	Change Sets	
Key				Value				Description		
ELBVPN				DOC-ASG02-VPN-767440485.eu-west-1.elb.amazonaws.com				Elastic Load Balancer FQDN		
ELBMGMT				DOC-ASG02-MGMT-1464513601.eu-west-1.elb.amazonaws.c om				Elastic Load Balancer FQDN		

For step-by-steps instructions, see 3.12 How to Deploy a NextGen Firewall Auto Scaling Cluster in AWS (page 155)

2.2.4 Remote Access

Remote Access features offer remote users secure access to their organization's cloud applications and resources from virtually any device. Depending on the type of access users require, they can choose between the full client-to-site VPN or the SSL VPN web portal.

Client-to-Site VPN

The client-to-site VPN uses the TINA VPN protocol on TCP port 691 to connect to the firewall cluster. TINA is designed to overcome limitations imposed by the IPsec protocol and offers immunity to NAT devices or proxies, heartbeat monitoring, and fast failover support. VPN clients can be authenticated through client certificates, external and internal authentication schemes, or a combination thereof. Supported VPN clients are:

- Barracuda VPN / NAC Client for Windows, macOS, Linux, and OpenBSD.
- CudaLaunch for Windows, macOS, iOS, and Android version 2.3.0 or higher.

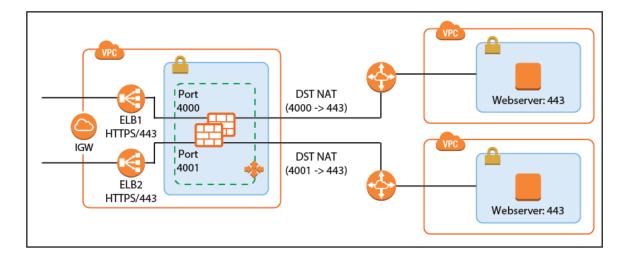
On the NextGen Firewall Auto Scaling Cluster, configure the VPN service for client-to-site connections by adding one or more VPN group policies. Incoming client-to-site connections are matched to a VPN group policy based on the group policy condition. The first matching VPN group policy is chosen. VPN group policy conditions allow you to define the following criteria:

- Group patterns from external authentication schemes
- X.509 certificate conditions
- VPN clients
- Source IP address or network for the VPN clients

Common Setting	s C2NetworkPolicy 🖂 🗹	Barracuda - Setting	js:	C2NetworkPo	licy 🔤 🗹
Statistic Name	AWS Auto Scale VPN Policy	Enforce Windo VPN Client Net		ıgs (Vista and ne	wero /
Network	C2SNetwork 172.16.0.0 ~	DNS Suffix for VP	N		
ONS	10.0.10.110	ENA	No		
VINS		Always On	No		
VINS		E Firewall Rules			
letwork Routes	Network Boutes	VPN Client NAC	Ign	ore	
	0.0.0.0/0	VPN			
	0.0.0.070	Offline			
		Firewall Always O			
		Login Message			
		Message			
Access Control List (ACL)	Access Control List	Bitmap			
Group Policy Co	ondition	1.			
External Group	Client	×509 Subject	Cert Policy / OID	Peer	
*	Phion, IPSec, Tr. Agent	emailAddress=.e	/=		

For step-by-step instructions, see 3.16 How to Configure a Client-to-Site VPN Group Policy for a NextGen Firewall Auto Scaling Cluster in AWS (page 175)

SSL VPN and CudaLaunch


The SSL VPN service provides seamless integration without having to install a client app. For a richer level of remote access, CudaLaunch works with the SSL VPN service to provide more advanced SSL VPN features such as SSL tunneling or native app support. The number of simultaneous users using the SSL VPN is limited only by the performance and number of firewall instances in the Auto Scaling group. Since the SSL VPN service is not designed to share session information between the members of the Auto Scaling group, the ELB must be configured to use sticky sessions and SSL offloading to ensure that the individual client will always be redirected to the same firewall instance. SSL VPN resources can be accessed by the following clients:

- CudaLaunch
- SSL VPN web interface All modern browsers.

For step-by-step instruction, see 3.17 How to Configure the SSL VPN Services for AWS Auto Scaling Clusters (page 183)

2.2.5 Firewall and IPS

The firewall cluster secures incoming and outgoing traffic from your AWS resources. This can be traffic from AWS instances in peered VPCs or instances in the private networks of the VPC. If enabled on the access rule matching the traffic, the IPS engine on the firewall continuously compares the packet stream with the internal signatures database for malicious code patterns. If malicious packets are identified, traffic is either reported or dropped, depending on the configuration of the IPS. To ensure that the latest patterns are used, the IPS patterns are updated automatically from the Barracuda download servers. When used in combination with a Barracuda Web Application Firewall cluster, the IPS and access rules block network layer attacks, saving processing power on the WAF for layer 7 attacks. For traffic to be able to flow through the firewall cluster and back, all access rules must use both source and destination IP address translation (NAT). This ensures that traffic will go back over the same firewall. The NextGen Firewall Auto Scaling Cluster cannot be used as the default gateways for your AWS resources.

2.2.6 Configuration and Monitoring

Barracuda NextGen Admin is a stand-alone, multi-administrator Microsoft Windows application used to administer NextGen Firewalls. Managing the configuration of the firewall cluster is very similar to managing a single firewall. Connect to the cluster through the ELB with a listener on TCP 807. This instance now transparently redirects the connections to other instances in the cluster as needed. Information on some tabs, such as the **CONFIGURATION** and **VPN** tabs, are aggregated by combining the data from all firewalls in the cluster. The **FIREWALL** > **History** page also displays connection data from all firewalls in the cluster. All other tabs and configuration elements display only the information of the firewall instance NextGen Admin is currently connected to.

- Aggregated tabs All pages in the CONFIGURATION tab.
- Aggregated pages VPN > Client-to-Site, VPN > Site-to-Site and FIREWALL > History.
- · Aggregated dashboard elements Updates element on the General dashboard.

On pages that display aggregated data from all firewall instances in the cluster, use the **Instance ID** column to filter or group the information by instance.

Login and Default Password

Connect to the firewall cluster via NextGen Admin using the FQDN of the ELB with a listener on TCP 807. The default password is the instance ID of the first instance in the Auto Scaling group. Go to the **Instance** tab of the Auto Scaling group and locate the instance that is protected from scale in to identify the first instance.

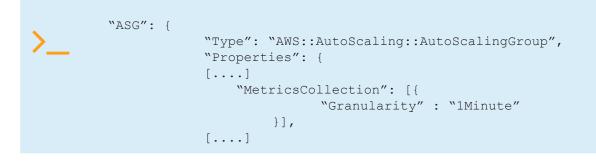
Details	Activity History	Scaling Policies	Instances	Monitoring	Notifications	Tags	Scheduled Actions	
Actions	. ~							ć
Actions	5 ¥							
	s ♥ Any Health Status ♥	Any Lifecycle Sta	ate 👻 🔍 F	ilter instances		×	< < 1	to 1 of 1 Instances > >

- IP Address /Name Enter the DNS name of the management ELB in front of the firewall cluster.
- **User** Enter root.
- Password The default password is the instance ID of the first instance.

Barracuda Ne	extGen Firewall
Firewall O Control Ce	nter 🔿 SSH
IP Address / Name DOC-ASG1	-MGMT-203375 ~
Username root	
Password ••••••	9
	Sign in

After logging in the first time, you are prompted to change your password.

Log Streaming to AWS CloudWatch


Log files stored on the firewall instances themselves are ephemeral. As soon as an instance is terminated, the log files are deleted with it. To keep the log files for later analysis, troubleshooting, or regulatory reasons, use syslog streaming on the firewalls to send them to AWS CloudWatch. There, the logs can be placed in groups, filtered, or processed further.

CloudWatch Dashboards Alarms	CloudWatch > Log Groups	> DOC-ASG1 > i-0ec405be8a5c5b762 Expand all • Row Text 2 • 6	θ
ALARM	Filter events	all 30s 5m 1h 6h 1d 1w custom -	ר
OK	Time (UTC +02:00)	Message	
Billing Events	2017-05-22		
	 15:16:04 	2017-05-22T13:16:03+00:00 127.0.0.1 srv_S1_VPN(-):[user]:err - TCP 192.168.254.231:50492: peek failed (Success). closing connection(fd=10)	^
Rules	15:16:04	2017-05-22T13:16:03+00:00 127.0.0.1 srv_S1_VPN(-):[user]:notice - Session TCP slot number 3560 terminated -> abort associated session	
Logs	15:16:07	2017-05-22T13:16:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:info - TCP start 192.168.253.248:32106: org=3 192.168.253.248:32106 -> 127.0.0.9:691	
	15:16:07	2017-05-22T13:16:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:info - TCP Accept on 127.0.0.9:691 from 192.168.253.248:32106 slot 1678 timeout 20	
Metrics	15:16:07	2017-05-22T13:16:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:err - TCP 192.168.253.248:32106: peek failed (Success). closing connection(fd=10)	

For step-by-step instructions, see 3.2 How to Configure Log Streaming to AWS CloudWatch (page 87)

Monitoring and Statistics through AWS CloudWatch

Each firewall in the cluster sends both basic and custom firewall metrics to AWS CloudWatch. Using AWS CloudWatch, you can monitor and visualize these metrics through CloudWatch alarms and dashboard widgets. Monitoring alarms through the dashboard widgets allows the admin to see why auto scaling policies were applied and offers the data necessary to make improvements. The granularity at which the metrics are published can be changed. By default, metrics are published every 5 minutes. Enable detailed monitoring to lower the granularity to 1 minute. This can be configured in the template by adding this parameter to the AutoScalingGroup (ASG) resource in the template.

2.2.7 Monitoring via NextGen Admin

For remote access and firewalling workloads, the firewall cluster NextGen Admin provides more detailed, up-to-date

information than is accessible through CloudWatch.

When logged in via NextGen Admin, client-to-site and SSL VPN tunnels are listed on the VPN > Client-to-Site and VPN >

Status pages. The data in the VPN tab is aggregated from all firewall instances in the ASG. The pages list all available client-to-

site and SSL VPN tunnels. On the **VPN > Status** page, the status is indicated by a colored icon In the **Tunnel** column:

- Blue The client is currently connected.
- Green The VPN tunnel is available, but currently not in use.
- Grey The VPN tunnel is currently disabled. To enable the tunnel, right-click it and select Enable Tunnel.

To troubleshoot individual connections, click the client-to-site tunnel in the list and then see the error messages in the inf

columns of the Drop Cache and Access Cache tabs.

	PGRP	AUTH-testuser-6rpBL2 AUTH-testuser-3WE9t		C2SP C2SP	SM:Auth-t SM:Auth-t			TIVE	1	0	1h 43m 52i 1h 43m 59i		192.168.254.41 192.168.254.41	Access Gr Access Gr			2.16.213.6	1h 43m 52s 1h 43m 59s	
	PGRP	AUTH-testuser-smHRI		C2SP	SM:Auth-t	estuser	AC.	TIVE	1	0	1h 44m 0s		192.168.254.41	Access Gr	anted	P 17	2.16.190.238	1h 44m 0s	
			< <u>85</u>		SM:Auth-t														
	PGRP	AUTH-testuser-btKJv2		C2SP	SM:Auth-t	estuser	AC	TIVE	1	0	1h 44m 8s		192.168.254.41	Access Gr	anted	217	2.16.50.111	1h 44m 8s	-
	PGRP	AUTH-testuser-IrTGS0	2 🕵	C2SP	SM:Auth-t	estuser	AC	TIVE	1	0	1h 44m 16	3	192.168.253.171	Access Gr	anted	217	2.16.191.237	1h 44m 16s	
	PGRP	AUTH-testuser-J80vSf	85	C2SP	SM:Auth-t	estuser	AC.	TIVE	1	0	1h 44m 19	3	192.168.253.171	Access Gr	anted	217	2.16.7.3	1h 44m 19s	Ξ.
<	0000	ALTER A	v	000D			100	TO (7	•	^	******		100 100 000 171	• •			0.10.150.07		÷ ۱
Acce	ss Cad	he:								Drop	Cache:								
A	Tun	Name	Peer	Info		Last	S	F 1	Last Status	AID	Tun	Name	Peer	Local	ĉ	L	Info		Pa
49	PGRP	AUTH-testuser-TfEYcx	192.168.254.41	SM:Auth	n-testuser	104 m	1	0 0	Granted	62	PGRP	AUTH	192.168.254.41	127.0.0.9	13	6 s	Reverse Routi	ing Check Fa	17

For more information about the **VPN > Client-to-Site** page, see VPN Tab.

For more information about the **FIREWALL > History** page, see History Page.

2.2.8 Scaling Policies - Scheduled Actions

The cluster scales to a predefined number of instances according to the time of day or date. Unhealthy or terminated instances are automatically replaced. Use scheduled scaling for predictable workloads, or to reduce the number of instances overnight when the load is low. Since one instance in the cluster is always protected from scale-in, it is not possible to completely shut down the firewall cluster. To retain high availability, at least two instances are needed. Scheduled actions are configurable in the **Scheduled Actions** tab of the Auto Scaling group settings.

Example scheduled action that scales up the cluster during the day Monday through Friday and scales back during the night

and on weekends:

Create Scheduled Action							
Name	NGF Evening Scale In						
Auto Scaling Group	DOC-ASG02-ASG-1ITRR5M5WGQDW						
Provide at least on	e of Min, Max and Desired Capacity						
Min	2						
Мах	10						
Desired Capacity	2						
Recurrence	Cron V 0 19 * * MON-FRI Example: 0 23 * * MON-FRI						
Start Time	00 : 00 UTC Specify the start time in UTC						
	The first time this scheduled action will run						
End Time	Set End Time						

Create Scheduled Action						
	Name Auto Scaling Group	NGF Morning Scale Out DOC-ASG02-ASG-11TRR5M5WGQDW				
	Provide at least one o	of Min, Max and Desired Capacity				
	Min	8				
	Мах	10				
	Desired Capacity	8				
	Recurrence	Cron V 0 7 * * MON-FRI Example: 0 23 * * MON-FRI				
	Start Time	00 : 00 UTC Specify the start time in UTC				
		The first time this scheduled action will run				
	End Time	Set End Time				

2.2.9 Scaling Policies - Dynamic Scaling

To optimize the firewall cluster to your workload, you need to select the metrics, and know how to interpret the values and the resulting action. Scaling metrics should be selected based on the use case. For example, a firewall cluster with a lot of client-to-site VPN connections should scale on the C2S Tunnels metric. If firewalling is the biggest part of the workload, it can also scale on the throughput or number of sessions, or number of dropped sessions. To achieve high availability, the firewall cluster must always use a minimum of two instances in two different Availability Zones.

Select the Relevant Metrics

To scale your firewall cluster dynamically, you must first select the metrics upon which you are going to the scale. The individual data points of the metrics can be averaged (relative performance metrics) or summed up (absolute performance metric) over a time period when creating the CloudWatch alarms. If you are adding up the data points (SUM), make sure to set the time period to match the metric collection granularity: One minute for detailed monitoring, five minutes for normal monitoring. For each metric, define upper and lower limits at which the cluster is scaled out and in. Make sure to leave enough room between the scale-out and scale-in thresholds to avoid the cluster from scaling in and out too frequently, resulting in additional cost and lower performance of the cluster. To avoid additional scaling actions before the previous action has taken effect, configure the ASG to use a cool-down period of at least 10 minutes (600 seconds). Use the CloudWatch widgets to visualize your alarms. This helps you to adjust the values to fit your workload.

It may also help to think about how the data points collected from the firewall cluster are used in the CloudWatch alarm:

• Averaged metrics (default) – Use average values over a time period that uses multiple metrics. Use longer time periods for the threshold to be more inert; shorten the time period to be more responsive. Setting the time period to a value that

is too short causes the cluster to scale out and in too often, causing unnecessary cost. If in doubt use relative metrics.

Absolute metrics – Set the CloudWatch alarm to add the metrics collected from the firewall cluster in the same time period that the metrics are published in. For detailed monitoring, select 1 minute, for standard monitoring 5 minutes. Using absolute values are a good choice if you want to define exact correlations between the value of a metric and the number of instances. For example: 500 client-to-site tunnels always equals 2 firewall instances; 1000 client-to-site tunnels always equals 5 instances, and so on. Absolute metrics are a good choice when the number of instances needed is non-linear.

Simple or Step Scaling

The next thing to define is if the scaling policy should always scale the same amount every time the alarm is triggered, or if there are different steps depending on by how much the value differs from the threshold value set in the alarm. Using a simple one-step scaling policy does not cope well with quickly increasing demand. By the time the scaling action has finished, the demand may have outpaced the number of available instances, forcing to scale multiple times to achieve the desired performance. This effect can be mitigated by scaling up multiple instances each time the alarm is triggered, potentially overshooting the required number of instances and incurring costs for the extra instance until the scale-in policy removes it.

For a more efficient scaling policy that covers both the slowly rising demand and quick changes, create a policy containing multiple steps. This allows you to immediately scale to the correct number of instances, thereby improving the efficiency of the cluster. Depending on the size of the step, increase the cool-down period after scaling to avoid scale-in policies from removing instances too quickly before the increased number of instances take effect.

Add Instances or Go to Exact Capacity when Scaling

The last decision before you can put your scaling policy into action is whether to simply add capacity when the alarm is triggered, or to use exact capacity numbers to match. For alarms using averaged metrics, add capacity; for absolute (SUM) metrics, set the exact capacity. Exact capacity is mainly used for non-linear workloads, whereas adding capacity is more flexible and requires less testing because the scaling threshold values are the same no matter how many instances there are in the cluster.

For step-by-step instructions, see

3.13 How to Configure Scaling Policies for a NextGen Firewall Auto Scaling Cluster (page 161)

Force Reconnect on Scaling Action for Client to Site VPN

A custom parameter in the firewall can force a redistribution of all client-to-site connections on each scaling event of the cluster. All clients automatically reconnect, thereby evening out the load. Depending on the type of traffic going through

the client-to-Site VPN, this action may not be transparent to the remote users because active sessions may time out and,

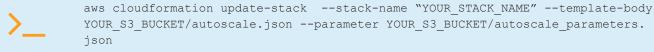
therefore, require the user to reconnect to the backend service.

For step-by-step instructions, see

3.16 How to Configure a Client-to-Site VPN Group Policy for a NextGen Firewall Auto Scaling Cluster in AWS (page 175)

2.2.10 Installing Hotfixes

Hotfixes are published by Barracuda Networks when an issue requires immediate attention, such as newly discovered security vulnerabilities or critical bugs in the firmware. Hotfixes are installed through the **Firewall** dashboard in NextGen Admin. New instances in the cluster automatically install the same hotfixes when the cluster scales. Most hotfixes reboot the firewall. Consider this when setting the cool-down value for scaling actions because it will take longer for an instance to be ready when multiple hotfixes need to be installed.


For step-by-step instructions, see How to Install Updates via NextGen Admin.

2.2.11 Firmware Update via CloudFormation Stack Update

Although possible, it is not recommended to install firmware updates like hotfixes through the **Update** element on the NextGen Admin dashboard. Instead, replace the AMI in the parameter file of your template and update the CloudFormation stack. The AMI for the new firmware version is listed in the **Manual Launch** tab of the listing for the Barracuda NextGen Firewall PAYG image in the AWS Marketplace.

1-Click Launch Review, modify and launch	Manual Launch With EC2 Console, API or CLI	Service Catalog Copy to SC and Launch							
Click "Accept Soft Software	Click "Accept Software Terms" to gain access to this Software								
	rms, you will have access to ich the AMIs listed below dia nanagement tools.								
Software Pricing Hourty									
Version 7.0.2-094-2017030	9*, released 03/27/2017								
← Launch	▼ Launch								
AMI IDs									
Region	ID								
Asia Pacific (Mumbai)	Asia Pacific (Mumbai) ami-661c6f09 Launch with EC2 Console								
EU (London)	ami-e6716582	Launch with EC2 Console							
EU (Ireland)	ami-f4cff292	aunch with EC2 Console							

If your templates are stored in an S3 bucket, enter this AWS CLI command to update CloudFormation stack:

PS C:\Users\mzoller\Documents\AWS_NGF_Official_Templates>
PS C:\Users\mzoller\Documents\AWS_NGF_Official_Templates> aws cloudformation update-stack --stack-name "DOC-ASGO2" --template-body https://s3-eu-westamazonaws.com/campus.deploytemplates/autoscale_json --parameter https://s3-eu-west-1.amazonaws.com/campus.deploytemplates/autoscale_parameters.json
{
 "stackId": "arn:aws:cloudformation:eu-west-1:726256585710:stack/DOC-ASGO2/7bb93280-3fb3-11e7-b21d-500c3cb898d2"
}
PS C:\Users\mzoller\Documents\AWS_NGF_Official_Templates>

After updating the stack, scale down to one instance and manually terminate the instance protected from scale-in through the AWS CLI or EC2 web portal. All new instances that are launched now use the new AMI in the updated launch configuration. If the instance that is protected from scale-in is not terminated manually, the firewall cluster will be in an inconsistent state.

2.2.12 Backup / Restore

Creating a backup and restoring the firewall configuration is analog to a stand-alone NextGen Firewall. To avoid overwriting the PAYG instance, the license must be saved prior to restoring the configuration.

To automate deployment, it also possible to modify the template to use an existing S3 bucket with a previous firewall configuration. Change the template so it does not create a new S3 bucket, and replace all references to use the existing bucket. Each firewall cluster requires a dedicated S3 bucket; it is not possible to share the configuration over multiple clusters. For step-by-step instructions, see 3.3 How to Restore a Configuration on a PAYG Firewall in the Public Cloud (page 93)

2.2.13 Building Access Rules

By default, the firewall blocks all traffic. Only traffic matching an access rule with an allowed policy is allowed to pass. For the traffic flow to always use the same firewall, all access rules must translate the source IP address to the IP address of the DHCP interface of the firewall. It is recommended to create a custom service and network object matching your setup. This allows for easy reuse and access rules that are human-readable. Although Dst NAT access rule support basic load balancing, it recommended to use AWS ELBs instead.

For step-by-step instructions, see Access Rules, Network Objects, and Service Objects.

VPN Clients to Backend Services

Each VPN client is assigned an IP address in the VPN client network on the firewall the client is connected to. Since all firewalls use the same VPN client network, the source IP address must be rewritten to the IP address of the firewall instance.

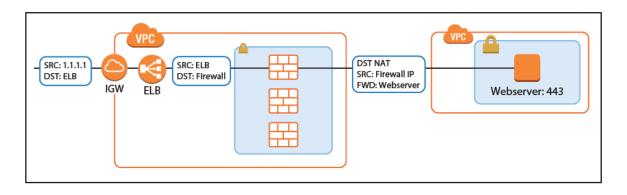
- Action Select Pass.
- Source Select Any.
- Service Select the services remote users are allowed to use, or select Any to allow all.
- Destination Select a network object containing the backend services or networks remote users are allowed to access.
- Connection Method Dynamic NAT or Translated IP from DHCP Interface.

Pass	VPNCLIENTS-2-BackendServices	
Pass	×	
🚓 🗌 Bi-Directional	💍 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule
Source	Service	Destination
Any	~ Any	 Backend Services
0.0.0/0	Ref: Any-TCP	10.100.1.0/24
	Ref: Any-UDP	10.100.3.0/24
	Ref: ICMP	10.33.4.5
	ALLIP	
Authenticated User	Policies	Connection Method
Any	V IPS Policy	Translated IP from DHCP Interface ~
	Default Policy	Network Interface
	Application Policy	dhcp
	No AppControl	uncp
	Schedule	
	Always	~
	QoS Band (Fwd)	
	Business (ID 3)	~
	QoS Band (Reply)	
	Like-Fwd	\sim

In the **TCP Policy** section of the **Advanced** access rule settings:

• Syn Flood Protection (Fwd) – Select Outbound.

TCP Policy							
Generic TCP Proxy	OFF						
Syn Flood Protection (Forward)	Outbound						
Syn Flood Protection (Reverse)							

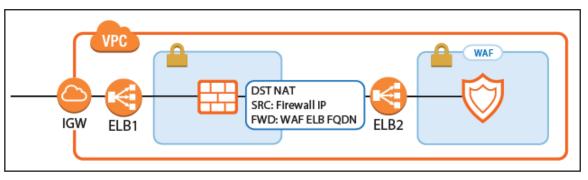

In the **Dynamic Interface Handling** section of the **Advanced** access rule settings:

- Source Interface Select VPN Clients.
- Continue on Source Interface Mismatch Select Yes.

Dynamic Interface Handling					
Source Interface	VPNClients				
Continue on Source Interface Mismatch	Yes				
Reverse Interface (Bi-directional)	Matching				

Internet to Backend Services

Create the following access rule to forward traffic from the Internet to an internal web server.


- Action Select Dst NAT.
- Source Select Any or a network object containing the networks the ELB is deployed in.
- Service Select the service. e.g., HTTP+S.
- Destination Select DHCP1 Local IP.
- Connection Method Select Dynamic NAT or Translated from DHCP Interface.
- Redirection Target Enter the IP address of the backend service. Optionally, append the port number to redirect to a

different port. e..g, 10.100.1.2 or 10.100.1.2:8080

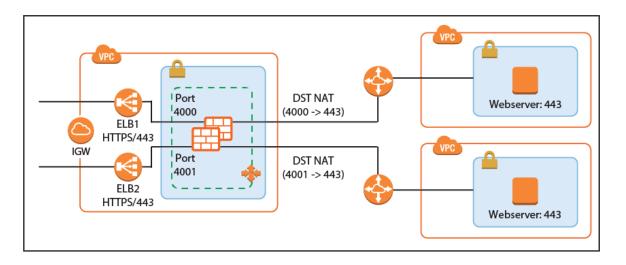
	INET-to-W	'ebSRVs			
Dst NAT ~					
📣 🗌 Bi-Directional	Ō	Dynamic Rule		🕘 🗌 Deactivate Rule	
Source	Ser	vice		Destination	
Any	~ нт	TPS	\sim	DHCP1 Local IP	~
0.0.0/0	т	CP 443 https Report if not (SSL)			
				Redirection	
				Target List	Reference 🗌
				10.100.1.2:8080	
				Fallback	\sim
				List of Critical Ports	
Authenticated User		icies		Connection Method	
Any		Policy	\sim	Translated IP from DHCF	PInterface 🗸
		fault Policy Ilication Policy	~	Network Interface	
		Control, URL.Fil		dhcp	
		edule			
	A	ways	\sim		
	QoS	Band (Fwd)			
			\sim		
	_	Band (Reply)			
	Like	e-Fwd	\sim		

Redirect Traffic through a WAF Cluster or Other Service Behind an Internal ELB

Services behind an internal ELB can also be forwarded via Dst NAT access rule.

1. Create a hostname network object for the internal DNS name of the ELB, set the DNS Lifetime to 30 seconds, and click

Send Changes.


Edit/Creat	Edit/Create Network Object					
Genera	1					
Туре	Hostname (DNS Resolved)	~				
Name	internal-DOC-Internal-ELB-1029999116.eu-we Resolv	e				
	DNS Lifetime (Sec) 30					

- 2. Create the access rule:
 - Action Select Dst NAT.
 - Source Select Any or a network object containing the networks the ELB is deployed in.
 - Service Select the service. e.g., HTTP+S.
 - Destination Select DHCP1 Local IP.
 - Connection Method Select Dynamic NAT or Translated from DHCP Interface.
 - Redirection Target Click Reference and select the network object for the ELB.

	INET-to-INTERNAL-ELB	
Dst NAT	×	
rectional	💍 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule
Source	Service	Destination
Any	✓ HTTP+S	✓ DHCP1 Local IP ✓
0.0.0/0	Ref: HTTP	
	Ref: HTTPS	
		Redirection
		Target List Reference 🗸
		internal-DOC-Internal-ELB-1029999 V
		Fallback 🗸
		List of Critical Ports
		80 443
Authenticated User	Policies	Connection Method
Any	V IPS Policy	Translated IP from DHCP Interface $$
	Default Policy	Network Interface
	Application Policy No AppControl	dhcp
	Schedule	
	Always	~
	QoS Band (Fwd)	
	VoIP (ID 2)	~
	QoS Band (Reply)	•
	Like-Fwd	~
	LINE I YYG	

Multiple Backend Services Using the Same Port

A variation of the same rule, only this time two services running on the same port must be accessed. The ELBs in front of the firewall cluster map the service to different ports on the firewall. The firewall forwards the traffic to the correct instance or internal ELB and maps it back to the correct port.

3. Add one ELB per service to the firewall cluster. Map the external port to a unique internal port. e.g., ELB1: 443 -> 4000

and ELB2 443 -> 4001

4. Create service objects for the internal ports on the firewall. Optionally, add Port Protocol Detection.

Edit/Create Se	rvice Object		Edit/Create Service Object				
Name webApp1-HTTPS <u>Service Color</u>		Service Color	Name	webApp2-HTTF	PS <u>Service Color</u>		
Description			Description				
Nr. Ports / 01 TCP 4		Plugin	Nr. Ports / 01 TCP /		Plug	in	

- 5. Create the Dst NAT access rule for the first backend service:
 - Action Select Dst NAT.
 - Source Select Any or a network object containing the networks the ELB is deployed in.
 - Service Select the service object for the first service. e.g, webApp1-HTTPS
 - Destination Select DHCP1 Local IP.
 - Connection Method Select Dynamic NAT or Translated from DHCP Interface.
 - Redirection Target Enter the IP address and port of the first backend service. e.g., 10.100.1.2:443

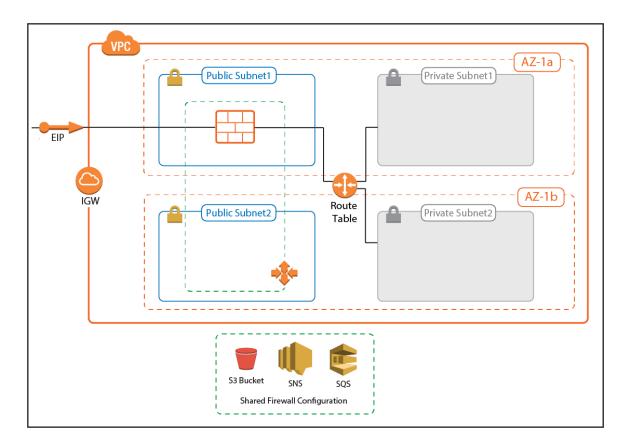
	INET-2-WebSRV1	
Dst NAT	×	
🛹 🗌 Bi-Directional	💍 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule
Source	Service	Destination
Any	webApp1-HTTPS	V DHCP1 Local IP
0.0.0/0	TCP 4000	
		Redirection
		Target List Reference
		10.100.1.2:443
		Fallback
		List of Critical Ports
Authenticated User	Policies	Connection Method
Any	V IPS Policy	Translated IP from DHCP Interface
	Default Policy Application Policy	Network Interface
	No AppControl	dhcp
	Schedule	
	Always	~
	QoS Band (Fwd)	
	VoIP (ID 2)	\sim
	QoS Band (Reply)	
	Like-Fwd	×

6. Create the Dst NAT access rule for the second backend service

- Action Select Dst NAT.
- Source Select Any or a network object containing the networks the ELB is deployed in.
- Service Select the service object for the first service. e.g, webApp2-HTTPS
- Destination Select DHCP1 Local IP.
- Connection Method Select Dynamic NAT or Translated from DHCP Interface.
- Redirection Target Enter the IP address and port for the second backend service e.g., 10.111.2.4:443

	INET-2-WebSRV2				
St NAT V					
🔿 🗌 Bi-Directional	💍 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule			
Source	Service	Destination			
Any	✓ webApp2-HTTPS	✓ DHCP1 Local IP ✓			
0.0.0/0	TCP 4001				
		Redirection			
		Target List Reference			
		10.111.2.4:443			
		Fallback 🗸			
		List of Critical Ports			
Authenticated User	Policies	Connection Method			
Any	IPS Policy Default Policy	✓ Translated IP from DHCP Interface ✓			
	Application Policy	Network Interface			
	No AppControl	dhcp			
	Schedule				
	Always	~			
	QoS Band (Fwd)				
	VoIP (ID 2)	~			
	QoS Band (Reply)				
	Like-Fwd	\sim			

Enabling IPS per Access Rule


For the Intrusion Prevention System to scan packets matching an access rule, select the **IPS Policy** in the Pass or Dst NAT access rule. Depending on the configuration of the IPS, malicious traffic patterns are now blocked or reported. For SSL encryption, it is recommended to use SSL offloading on the ELB to allow the IPS to analyze the decrypted traffic. This saves processing power on the firewall. If end-to-end encryption is required for regulatory reasons, enable SSL Interception on the access rule and in the IPS configuration to also scan SSL-ecrypted traffic.

Policies IPS Policy	
Default Policy	\sim
Application Policy	
No AppControl	
Schedule	
Always	~
QoS Band (Fwd)	
VoIP (ID 2)	\sim
QoS Band (Reply)	
Like-Fwd	\sim

For step-by-step instructions, see Intrusion Prevention System (IPS).

2.3 NextGen Firewall Cold Standby Cluster

A NextGen Firewall Cold Standby Cluster is a low-cost architecture for AWS deployments that minimizes downtime to only a few minutes in case of failure of the underlying hypervisor hardware, the firewall instance, or the complete Availability Zone. From a technical standpoint, the Cold Standby Cluster is a NextGen Firewall Auto Scaling Cluster with the size set to one. The firewall configuration is securely stored and synchronized through AWS backend services. Replacing the Elastic Load Balancer used in the NextGen Auto Scaling Cluster with a floating Elastic IP allows the use of both TCP- and UDP-based services on the firewall. The default template uses hourly PAYG licensing, but can be modified to use pool licenses for Control Centermanaged instances.

2.3.1 Use Cases for a NextGen Firewall Cold Standby Cluster

The NextGen Firewall Cold Standby Cluster is used to secure access to resources in the private networks of its own VPC, or to deploy in a Transit VPC as a part of a larger cloud infrastructure.

• Site-to-Site VPN – One way on-premises to AWS, TINA, and IPsec site-to-site VPN tunnels.

- Edge Firewall Scan for malicious traffic using the built-in IPS and handle access to resources via access rules.
- Secure Remote Access Client-to-site VPN, CudaLaunch, and SSL VPN using TINA, SSL VPN, and IPsec VPN protocols.

2.3.2 Deploying a NextGen Firewall Auto Scaling Cluster

The Cold Standby Cluster must be deployed via a CloudFormation template. The template deploys a VPC with public and

private subnets in two Availability Zones. The Auto Scaling Cluster is deployed in the public subnets. Instances placed in the

private subnets are automatically routed over the active firewall instance.

Create an IAM role for a NextGen Firewall in an Auto Scaling group. For step-by-step instructions, see 3.1 How to Create an

IAM Role for an F-Series Firewall in AWS (page 79)

Download the NGF_ColdStandby.json template and parameter file from the Barracuda Network GitHub account:

https://github.com/barracudanetworks/ngf-aws-templates.

Accept the Software Terms for the Barracuda NextGen Firewall PAYG image in the AWS Marketplace.

Create a parameter template file containing your parameters values.

Deploy the **coldstandby.json** CloudFormation template via AWS CLI or AWS console.

×	
- -	

aws cloudformation create-stack --stack-name "YOUR_STACK_NAME" --template-body YOUR_S3_BUCKET/NGF_ColdStandby.json --parameter YOUR_S3_BUCKET/NGF_ColdStandby_ parameters.json

During deployment, the following resources are created by the template:

- VPC with private and public subnets in two Availability Zones.
- One S3 bucket.
- Automatically created SNS and SQS queues.
- A Launch Configuration and Auto Scaling group for the firewall. The Barracuda NextGen Firewall PAYG image must be used.

After stack creation is complete, wait for one firewall instance to spin up and finish provisioning.

For step-by-step instructions, see 2.3 NextGen Firewall Cold Standby Cluster (page 49)

2.3.3 Control Center-Managed NextGen Firewall Cold Standby Cluster

The NextGen Control Center is a central management appliance for F-Series Firewall, that can be deployed as a virtual appliance on-premises or in the cloud. Managing the Cold Standby Cluster with a NextGen Control Center separates the firewall configuration and monitoring from deployment and integration with other AWS services. This is especially useful for highly specialized or large departments with dedicated network security teams and multiple developer teams using automatic deployments. Managed firewalls are preconfigured on the Control Center. During provisioning of the firewall instance, the configuration is retrieved from the Control Center. Optionally, pool licenses can be used that are bound to the Control Center license instead of the EC2 instance of the firewall. Pool licenses are available in multiples of 5.

For step-by-step instructions, see 3.6 How to Modify CloudFormation Templates to Retrieve the PAR File from a Control Center (page 105)

Modifying the Default CloudFormation Template

To fetch the configuration from the Control Center, the default template must be edited to invoke the getpar command with the information required to be able to connect to the Control Center. If the PAYG images are used, the licenses are sent to the Control Center before retrieving the firewall configuration. For a Cold Standby Cluster, only one firewall configuration is required on the Control Center.

For step-by-step instructions, see 2.3 NextGen Firewall Cold Standby Cluster (page 49)

Managing Firewall Configuration at Scale with the Control Center

Managing multiple similar firewall configurations is greatly simplified by using a Control Center. Configuration nodes and cluster-based services, such as the distributed firewall service, are shared across multiple firewall instances. The Control Center also handles pattern updates and hotfixes centrally.

For more information, see 2.3 NextGen Firewall Cold Standby Cluster (page 49)

2.3.4 Login and Default Password

1. Connect to the firewall cluster via NextGen Admin using the Elastic IP. The default password is the instance ID of the firewall.

2. Go to the Instance tab of the Auto Scaling group and use the instance ID from the one instance that is running.

Details	Activity History	Scaling Policies	Instances	Monitoring	Notifications	Tags	Scheduled Actions	
Actions	5 🖤							0
Filter:	Any Health Status 👻	Any Lifecycle State	e 👻 🔍 Filt	ter instances		×	K < 1t	oloflInstances >>>

- IP Address /Name Enter the Elastic IP address associated with the firewall.
- **User** Enter root.
- **Password** The default password is the instance ID of the first instance.

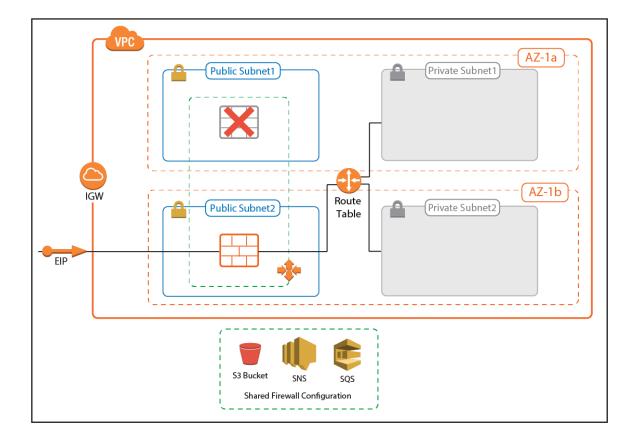
Barracuda	a NextGen Firewall
● Firewall C) Control Center 🛛 🔿 SSH
IP Address / Name	34.250.52.102 ~
Username	root
Password	•••••
	Sign in

52 | NextGen Firewall Cold Standby Cluster

2.3.5 Cold Standby Failover

A failover occurs when the firewall instance is terminated, either due to a cloud-level incident such as emergency

maintenance on the hardware, or if the EC2 instance health checks fail for the instance, causing it to be terminated and


replaced by the Auto Scaling group. The failover process follows these steps:

- 1. Health check fails for firewall instance.
- 2. The unhealthy firewall instance is terminated.
- 3. The Auto Scaling group launches a replacement firewall instance.
- 4. Provisioning of the new firewall instance:
 - Configuration from S3 bucket is used.
 - The instance is associated with the Elastic IP.
 - Routes pointing to the firewall instance are rewritten to use the new firewall instance.
 - Hotfixes are installed on the firewall. This may cause the firewall to reboot.
 - (BYOL only) The firewall automatically fetches the configuration from a NextGen Control Center.
- 5. The new firewall instance is now provisioned.

Note that only routes for which there are AWS CLI commands in the user data section of the templates are changed. The

Cold Standby Cluster does not monitor the route tables in the VPC. If this is required, use a NextGen Firewall High Availability

Cluster instead.

2.3.6 Scaling Up or Scaling Down

Scale the Cold Standby Cluster up by replacing the instance type in the template with a larger instance size and then update the stack. After the stack update is complete, terminate the running instance using the old instance type. The Auto Scaling group now automatically replaces the firewall with an instance using the new instance type.

2.3.7 Installing Hotfixes

Hotfixes are published by Barracuda Networks when an issue requires immediate attention, such as newly discovered security vulnerabilities or critical bugs in the firmware. Hotfixes are installed through the **Firewall** dashboard in NextGen Admin. New instances in the cluster automatically install the same hotfixes when the cluster scales. Most hotfixes reboot the firewall. Consider this when setting the health check grace period because it will take longer for an instance to be ready when multiple hotfixes need to be installed. If the health check is resumed too early, while the firewall is still installing the hotfix or rebooting, the instance is terminated because it is deemed unhealthy. This results in a loop of starting and terminating instances.

To change the health check grace period, modify the **HealthCheckGracePeriod** parameter in the template and update the stack.

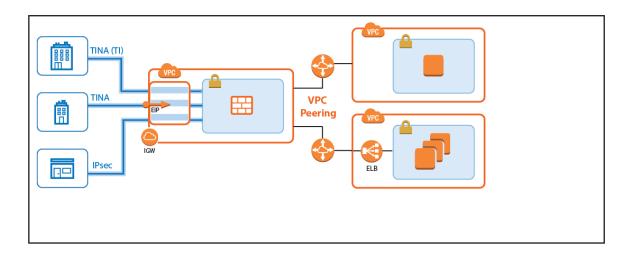
For step-by-step instructions, see 2.3 NextGen Firewall Cold Standby Cluster (page 49)

2.3.8 Firmware Update via CloudFormation Stack Update

Although possible, it is not recommended to install firmware updates like hotfixes through the **Update** element on the NextGen Admin dashboard. Instead, replace the AMI in the parameter file of your template and update the CloudFormation stack. The AMI for the new firmware version is listed in the **Manual Launch** tab of the listing for the Barracuda NextGen Firewall PAYG image in the AWS Marketplace.

1-Click Launch Review, modify and launch	Manual Launch With EC2 Console, API or CLI	Service Catalog Copy to SC and Launch				
Click "Accept Software Terms" to gain access to this Software						
Once you accept these terms, you will have access to this software in any supported region. You can then launch the AMIs listed below directly from the EC2 console, EC2 APIs, or with other AWS management tools.						
Software Pricing Hourly						
Version 7.0.2-094-2017030	9°, released 03/27/2017					
▼ Launch						
AMI IDs						
Region	10					
Asia Pacific (Humbal)	ami-661c6f09	aunch with EC2 Console				
EU (London)	ami-e6716582	aunch with EC2 Console				
EU (Ireland)	ami-f4cff292	aunch with EC2 Console				

If your templates are stored in an S3 bucket, enter this AWS CLI command to update CloudFormation stack:



aws cloudformation update-stack --stack-name "YOUR_STACK_NAME" --templatebody YOUR_S3_BUCKET/coldstandby.json --parameter YOUR_S3_BUCKET/coldstandby_ parameters.json

After updating the stack, manually terminate the firewall instance. The replacement instance using the new firmware is automatically launched. If the firewall is managed by a Control Center, the cluster the firewall configuration is stored in might have to be migrated after updating the AMI to a new major release, such as 7.1, 7.2, etc...

2.3.9 Site-to-Site VPN Tunnels for Cold Standby Clusters

Site-to-site VPN tunnels transparently connect on-premises networks. The NextGen Firewall supports TINA, IPsec IKEv1, and IKEv2 VPN protocols. Since ESP is not supported, IPsec VPN tunnels must use NAT-T. It is recommended to configure the NextGen Firewall to be the active VPN endpoint. For all instances in the private subnets using the firewall as the default gateway and all instances in VPCs connected via the AWS VPN gateway, the site-to-site VPN tunnel is fully transparent in both directions. If VPC peering is used and the firewall cannot be configured to be the default gateway for the instance, the source IP address for the traffic leaving the tunnel must be rewritten to the address of the DHCP interface of the firewall. Resources in peered VPCs cannot connect directly to the remote networks.

For step-by-step instructions, see 3.7 How to Create a TINA VPN Tunnel between F-Series Firewalls (page 111)

2.3.10 Access Rules

By default, the firewall blocks all traffic. Only traffic matching an access rule with an allowed policy is allowed to pass. If the destination instance is using the firewall as the default gateway, the source IP address does not have to be rewritten; otherwise, the source NAT must be used. Although Dst NAT access rules support basic load balancing, it is recommended to use internal AWS ELBs instead.

For more information, see Access Rules.

Enabling IPS per Access Rule

For the Intrusion Prevention System to scan packets matching an access rule, select the **IPS Policy** in the Pass or Dst NAT access rule. Depending on the configuration of the IPS, malicious traffic patterns are now blocked or reported. For SSL-encrypted traffic, it is recommended to use SSL offloading on the ELB to allow the IPS to analyze the decrypted traffic. This saves processing power on the firewall. If end-to-end encryption is required for regulatory reasons, enable SSL Interception on the access rule and in the IPS configuration to also scan SSL-encrypted traffic.

Policies IPS Policy	
Default	\sim
Application Policy	
No AppControl	
Schedule	
Always	~
QoS Band (Fwd)	
VoIP (ID 2)	\sim
QoS Band (Reply)	
Like-Fwd	\sim

For more information, see Intrusion Prevention System (IPS).

Block Traffic Based on Geographic Location of Source IP Address

Create a network object containing the countries you want to block.

For more information, see 3.8 How to Create a Geo Location based Network Object (page 119)

Genera	al			Description	
Туре	Generic IPv4 Network Obj	ect (IP, Network, Ra	nges) 🗸		^
Name	EmbargoCountries		Resolve		
				Network Color	~
nclud	e Entries	+ 💽 🕫	× 🧷	Exclude Entries	+ 🔍 🔀 🗙 🥖
Cub Iran Kor	n rea People's Republic	Comment		IP / Ref / Geo	Comment
	le L3 Pseudo Bridaina				OK Cancel

Create a Block access rule using the geolocation network object as the source matching criteria:

- Action Select Block or Deny.
- Source Select the network object containing the countries you want to block.
- Service Select Any.
- Destination Select DHCP1 Local IP.

	BlockEmbargoCountries	
Block		
🚓 🗌 Bi-Directional	💍 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule
Source	Service	Destination
EmbargoCountries Cuba Iran Korea People's Republic Sudan Syrian Arab Republic	 Any Ref: Any-TCP Ref: Any-UDP Ref: ICMP ALLIP 	 ✓ DHCP1 Local IP ✓ ✓

Site-to-Site VPN Tunnel to Backend Services in a Peered VPC

When connecting to services running in a VPC that is peered to the firewall VPC through a site-to-site VPN tunnel, the site-tosite tunnel can only be used one-way from on-premises to the AWS resource. Since the firewall is not the default gateway for the AWS instances running in the private subnets, the source IP address must be rewritten to match the firewall's IP address when exiting the VPN tunnel.

Action – Select Pass.

- **Source** Select a network object containing the on-premises networks. These networks must be configured as the remote network for the site-to-site VPN tunnels.
- Service Select the services, or select Any to allow all.
- **Destination** Select a network object containing the backend networks and/or IP addresses in AWS. These networks must be configured as the local network for the site-to-site VPN tunnels.
- Connection Method Translated IP from DHCP Interface.

	ONPREM-VPN-AWSVPC		
Pass ~			
🛃 🗌 Bi-Directional	💍 🗌 Dynamic Rule	🕘 🗌 Deactivate	Rule
Source	Service	Destination	
HQ_and_BO_LANS	~ Any	AWS_Peered_VPC	1 ~
Ref: BO_Networks	Ref: Any-TCP	10.23.0.0/24	
Ref: HQ-LAN	Ref: Any-UDP		
Ref: HQ-DMZ-Servers	Ref: ICMP		
Ref: AWS_Private_LAN	ALLIP		
Authenticated User	Policies	Connection Meth	od
Any	VIPS Policy	Translated IP from	DHCP interface 🗸
		Network Interface	<u> </u>
	Application Policy No AppControl	dhcp	-
	Schedule	unç	
	Always	~	
	QoS Band (Fwd)		
	VoIP (ID 2)	\sim	
	QoS Band (Reply) Like-Fwd	~	
	Like-Fwd	×	

Site-to-Site VPN Tunnel to Backend Services using the Firewall as the Default Gateway

For EC2 instances using the firewall as the default gateway, the site-to-site VPN tunnels do not require source or destination NAT.

- Action Select Pass.
- **Source** Select a network object containing the on-premises networks. These networks must be configured as the remote network for the site-to-site VPN tunnels.
- Service Select the services, or select Any to allow all.
- **Destination** Select a network object containing the backend networks and/or IP addresses in AWS. These networks must be configured as the local network for the site-to-site VPN tunnels.
- Bi-Directional Select to allow traffic in both directions.
- Connection Method Original Source IP.

	ONPREM-VPN-AWSVPC				
Pass ~					
📣 🗹 Bi-Directional		💍 🗌 Dynamic Rule		🕘 🗌 Deactivate Rule	
Source		Service		Destination	
HQ_and_BO_LANS	~	Any	~	AWS_Private_LAN	~
Ref: BO_Networks		Ref: Any-TCP		10.10.200.0/24	
Ref: HQ-LAN		Ref: Any-UDP			
Ref: HQ-DMZ-Servers		Ref: ICMP			
Ref: AWS_Private_LAN		ALLIP			
Authenticated User		Policies		Connection Method	
Any	~	IPS Policy No Scan	\sim	Original Source IP	~
		Application Policy		Original Source IP	
		No AppControl			
		Schedule			
		Always	~		
		QoS Band (Fwd)			
		VoIP (ID 2)	\sim		
		QoS Band (Reply)			
		Like-Fwd	\sim		

VPN Clients to Backend Services

Each VPN client is assigned an IP address in the VPN client network on the firewall the client is connected to.

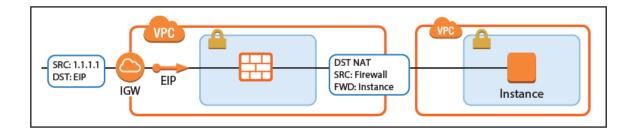
- Action Select Pass.
- Source Select Any.
- Service Select the services remote users are allowed to use, or select Any to allow all.
- Destination Select a network object containing the backend services or networks remote users are allowed to access.
- Connection Method Translated IP from DHCP Interface or Original Source IP depending on the destination.

Pass		LIENTS-2-BackendServices	NTS-2-BackendServices				
rectional		💍 🗌 Dynamic Rule		O Deactivate Rule			
Source		Service		Destination			
Any	~	Any	~	Backend Services ~			
0.0.0/0		Ref: Any-TCP		10.100.1.0/24			
		Ref: Any-UDP		10.100.3.0/24			
		Ref: ICMP		10.33.4.5			
		ALLIP					
Authenticated User		Policies		Connection Method			
Any	~	IPS Policy		Translated IP from DHCP Interface ~			
		Default Policy	\sim	Network Interface			
		Application Policy		dhcp			
		No AppControl		ancp			
		Schedule					
		Always	~				
		QoS Band (Fwd)					
		Business (ID 3)	\sim				
		QoS Band (Reply)					
		Like-Fwd	\sim				

In the **TCP Policy** section of the **Advanced** access rule settings:

• Syn Flood Protection (Fwd) – Select Outbound.

TCP Policy	
Generic TCP Proxy	OFF
Syn Flood Protection (Forward)	Outbound
Syn Flood Protection (Reverse)	


In the **Dynamic Interface Handling** section of the **Advanced** access rule settings:

- Source Interface Select VPN Clients.
- Continue on Source Interface Mismatch Select Yes.

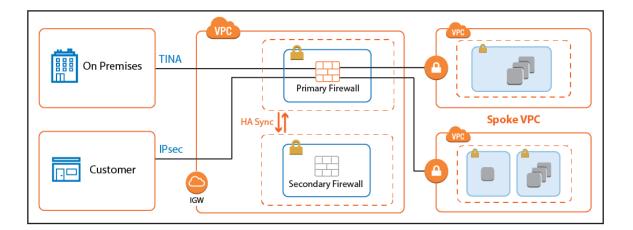
Dynamic Interface Handling					
Source Interface	VPNClients				
Continue on Source Interface Mismatch	Yes				
Reverse Interface (Bi-directional)	Matching				

Internet to Backend Services not Using the Firewall as the Default Gateway

Create the following access rule to forward traffic from the Internet to an internal web server.

- Action Select Dst NAT.
- Source Select Any or a network object containing the networks the ELB is deployed in.
- Service Select the service. e.g., HTTP+S.
- Destination Select DHCP1 Local IP.
- Connection Method Select Dynamic NAT or Translated from DHCP Interface.
- Redirection Target Enter the IP address of the backend service. Optionally, append the port number to redirect to a

different port. e..g, 10.100.1.2 or 10.100.1.2:8080


Bi-Directional Ource Destination Any HTTPS Destination 0.0.0.0/0 HTTPS DHCP1 Local IP TCP 443 https Report if not (SSL) DHCP1 Local IP Redirection Target List Reference 10.100.1.2:8080 Fallback Ist of Critical Ports Authenticated User Policies Connection Method Any IPS Policy Translated IP from DHCP Interface Application Policy Application Policy Network Interface Always QoS Band (Fwd) Connection Method		INET-	to-WebSRVs		
Source Service Destination Any HTTPS 0.0.0.0/0 TCP 443 https Report if not (SSL) DHCP1 Local IP Redirection Target List Reference 10.100.1.2:8080 Fallback Fallback Authenticated User Policies Connection Method Any Default Policy Default Policy Translated IP from DHCP Interface AppControl, URL.Fil Schedule Always QoS Band (Fwd)	Dst NAT V				
Any \vee 0.0.0.0/0 TCP 443 https Report if not (SSL) TCP 443 https Report if not (SSL) Redirection Target List Reference [10.100.1.2:8080 Fallback \vee List of Critical Ports Authenticated User Policies Any Default Policy Default Policy Translated IP from DHCP Interface Application Policy AppControl, URL.Fil Schedule Always Always V QoS Band (Fwd) Veetore	🛹 🗌 Bi-Directional		💍 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule	
0.0.0.0/0 TCP 443 https Report if not (SSL) Redirection Target List Reference 10.100.1.2:8080 Fallback List of Critical Ports Authenticated User Policies IPS Policy Default Policy Application Policy Application Policy Application Policy Aways QoS Band (Fwd)	Source		Service	Destination	
Authenticated User Policies Authenticated User Policies IPS Policy IPS Policy Default Policy V Application Policy V AppControl, URL.Fil Schedule Always V QoS Band (Fwd) V	Any	~	HTTPS ~	DHCP1 Local IP	~
Authenticated User Policies Any Policies IPS Policy Translated IP from DHCP Interface Application Policy Network Interface AppControl, URL.Fil Schedule Always V QoS Band (Fwd) V	0.0.0/0		TCP 443 https Report if not (SSL)		
Authenticated User Policies Any Policies IPS Policy Translated IP from DHCP Interface Application Policy Network Interface AppControl, URL.Fil Schedule Always V QoS Band (Fwd) V				· · · · ·	
Authenticated User Policies Authenticated User Policies IPS Policy IPS Policy Default Policy V Application Policy V AppControl, URL.Fil Schedule Always V QoS Band (Fwd) V				Redirection	
Authenticated User Policies Any Policies Default Policy Translated IP from DHCP Interface Application Policy Network Interface Always QoS Band (Fwd)				Target List	Reference 🗌
Authenticated User Policies Connection Method Any IPS Policy Translated IP from DHCP Interface Default Policy Application Policy Network Interface AppControl, URL.Fil Schedule Always QoS Band (Fwd)				10.100.1.2:8080	
Authenticated User Policies Connection Method Any IPS Policy Translated IP from DHCP Interface Default Policy Application Policy Network Interface AppControl, URL.Fil Schedule Always QoS Band (Fwd)				Fallback	\sim
Any IPS Policy Translated IP from DHCP Interface Default Policy Application Policy Network Interface AppControl, URL.Fil Schedule dhcp Always QoS Band (Fwd) Vector				List of Critical Ports	
Any IPS Policy Translated IP from DHCP Interface Default Policy Application Policy Network Interface AppControl, URL.Fil Schedule dhcp Always QoS Band (Fwd) Vector					
Default Policy Inanslated IP from DHCP Interface Application Policy Network Interface AppControl, URL.Fil dhcp Schedule Always QoS Band (Fwd) Other State	Authenticated User		Policies	Connection Method	
Application Policy AppControl, URL.Fil Chedule Always QoS Band (Fwd) AppControl (Fwd)	Any	~		Translated IP from DHC	P Interface 🗸
AppControl, URL.Fil dhcp Schedule Always QoS Band (Fwd)			,	Network Interface	
Schedule QoS Band (Fwd)				dhcp	
Always ~ QoS Band (Fwd)				uncp	
QoS Band (Fwd)					
			· ·		
VoIP (ID 2)				1	
QoS Band (Reply)					
Like-Fwd V					

2.4 Transit VPC using NextGen Firewall

Connecting multiple VPCs to multiple locations, such as your datacenter or customer offices, can cause significant configuration overhead, especially if VPCs are frequently added and removed. For example, adding a new VPC requires configuration changes to each on-premises location. A second weak point is the communication between the VPCs. To share common resources, VPCs must be peered if they are in the same region; otherwise, the traffic must be routed through your datacenter.

To reduce the number of VPN connections required by each device participating in the network, use a central VPC as a Transit VPC and arrange the VPCs in a hub and spoke topology. The Transit VPC uses a NextGen Firewall High Availability Cluster or a NextGen Firewall Cold Standby Cluster as the VPN hub for all site-to-site VPN tunnels.

Shared services used by all spoke VPCs can be located in the Transit VPC or in a separate VPC peered to the Transit VPC. The service VPC can also host replicated on-premises services to save bandwidth to the datacenter.

2.4.1 Use Cases for a NextGen Firewall Transit VPC

The Transit VPC is a very versatile and flexible architecture that can be combined with the other reference architectures, except multi-NIC Segmentation, to create a central firewall hub for all your cloud resources.

2.4.2 Deploying a Transit VPC via CloudFormation Templates

It is recommended to deploy the Transit VPC via a CloudFormation template. The template deploys a NextGen High Availability Cluster in the Transit VPC and two spoke VPCs with VPN gateways. The firewalls are automatically joined into the

High Availability Cluster, but failing over the Elastic IP addresses requires manual configuration steps.

To configure the site-to-site VPN from the VPN gateways:

Create an IAM role for the firewall cluster. For step-by-step instructions, see 3.1 How to Create an IAM Role for an F-Series

Firewall in AWS (page 79)

Download the NGF_TransitVPC.json template and parameter file from the Barracuda Network GitHub account:

https://github.com/barracudanetworks/ngf-aws-templates.

Accept the Software Terms for the Barracuda NextGen Firewall PAYG or BYOL image in the AWS Marketplace.

Create a parameter template file containing your parameters values.

Deploy the transit_vpc.json CloudFormation template via AWS CLI or AWS console.

>__

aws cloudformation create-stack --stack-name "YOUR_STACK_NAME"-template-body YOUR_S3_BUCKET/NGF_TransitVPC.json --parameter YOUR_S3_ BUCKET/NGF_TransitVPC_parameters.json

During deployment, the following resources are created by the template:

- One Transit VPC with a NextGen Firewall High Availability Cluster.
- Two Elastic IP addresses for the firewall cluster.
- Two spoke VPCs with VPN gateways.

After deploying the template, the following manual configuration steps are required to finish the setup:

- Configure site-to-site VPN tunnels and BGP routing for each VPN gateway.
- Configure Elastic IP addresses to fail over with the virtual server.

For step-by-step instructions on how to deploy a CloudFormation template, see 3.10 How to Deploy an F-Series Firewall in

AWS via CloudFormation Template (page 139)

Configure Elastic IP Address Transfer

Since the AWS VPN gateway can only be configured to use one IP address, the same elastic IP address must always be associated with the active firewall in the cluster. Configure the virtual server on the firewall to execute an AWS CLI command that reassigns the Elastic IP addresses every time the virtual server fails over. Write down the Elastic IP addresses associated with the primary and secondary firewalls:

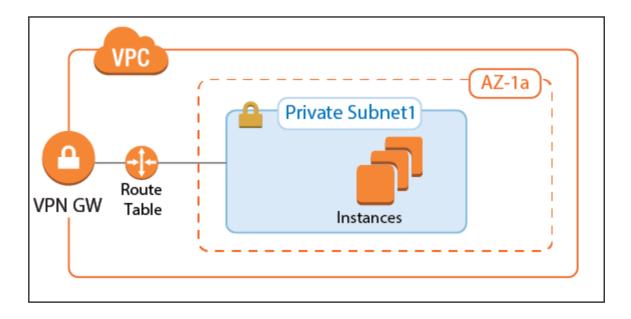
- Primary Firewall Elastic IP address for the active firewall.
- Secondary Firewall Elastic IP address for the passive firewall.
- 1. Log into the primary firewall with NextGen Admin.
- 2. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > S1 > Server Properties.
- 3. Click Lock.
- 4. In the left menu, select Custom Scripts.

5. Enter the Start Script AWS CLI command to re-associate the active Elastic IP address when the virtual server starts.

/opt/aws/bin/aws ec2 associate-address --instance-id \$(/usr/bin/ curl -s http://169.254.169.254/latest/meta-data/instance-id) --allocation-id ACTIVE ELASTIC IP ID --allow-reassociation

6. In the Stop Script, enter the AWS CLI command to re-associate the passive Elastic IP address when the virtual server

shuts down.


/opt/aws/bin/aws ec2 associate-address --instance-id \$(/usr/bin/ curl -s http://169.254.169.254/latest/meta-data/instance-id) --allocation-id PASSIVE ELASTIC IP ID --allow-reassociation

7. Click Send Changes and Activate.

AWS VPN Gateway

The AWS VPN gateway connects the EC2 instances in the VPC to the Transit VPC via VPN connections. The customer gateway is configured for the Elastic IP address associated with the active firewall. Each VPN connection to the AWS VPN gateway is made up of two parallel IPsec IKEv1 tunnels. BGP is configured on the firewall to prefer the first tunnel and to use the secondary tunnel in case the primary is down.

The routing between the Transit VPC and the spokes is handled by BGP. The spoke VPCs learn the default route from the firewall and send all traffic through the VPN gateway and the Transit VPC high availability firewall cluster. The firewall learns the spoke VPC networks propagated by the VPN gateway. When a spoke VPC is added or removed, BGP automatically propagates the changes to all connected networks.

AWS Route Tables

The AWS route tables can be configured with static routes over the VPN gateway, or they can be configured to learn the routes via BGP. Using BGP has the advantage of being able to control all routing in the firewall's BGP service. However, whether static or dynamic, it is recommended to configure the default route through the VPN gateway. This ensures that all traffic for the VPC passes through the firewalls and that the security policies can be applied in one central location. Configure the AWS route table for the spoke VPCs to learn the routes propagated by the firewall BGP service. To send all traffic through the Transit VPC, propagate the default route to the spoke VPCs. If propagated routes in the AWS route tables overlap with the local route of the VPC, the local route is always preferred. This applies not only to the local route, but also to all static routes. Static routes are preferred over the learned routes.

Enabling Route Propagation for AWS Route Tables

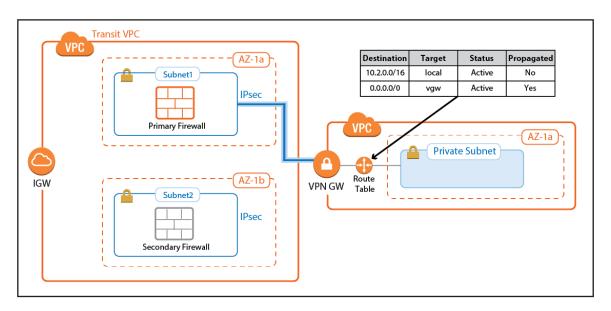
- 1. Log into the AWS console.
- 2. Click Services, and select VPC.
- 3. In the Virtual Private Cloud section of the left menu, click Route Tables.
- 4. (optional) Filter the list using the VPC ID.
- 5. Select the route table for the spoke VPC.
- 6. In the lower half of the page, click the **Route Propagation** tab.
- 7. Click Edit.
- 8. Select the VPN gateway and click Save.

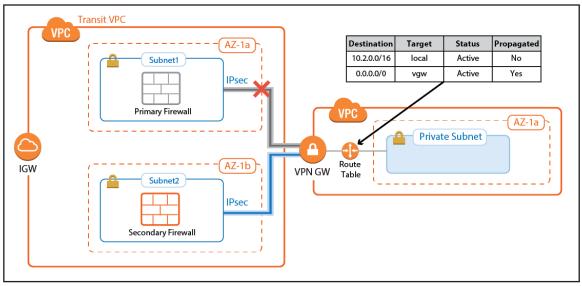
rtb-51575135 DOC-TransitVPC-RouteTableSpoke1						
Summary	Routes	Subnet	t Associations	Route Propagation	Tags	
Cancel Save						
Virtual Private Gateway			Propagate			
vgw-27ba8953 DOC-TransitVPC-Spoke1VPNGW						

Configure the IPsec Tunnels on the Transit VPC Firewalls

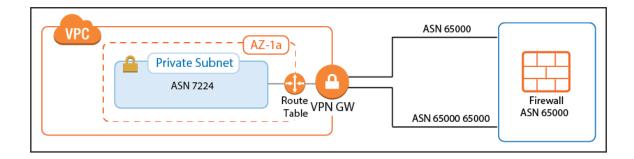
To connect the spoke VPC to the Transit VPC, configure two IPsec tunnels: two parallel IPsec tunnels to the Elastic IP of the active firewall. AWS defines a /30 intermediary network for each IPsec tunnel. The IP addresses in this intermediary network are used by BGP. Define BGP neighbors for each next-hop address as per the instructions provided by AWS. The VPN connection information is unique for each VPN connection and can be downloaded by right-clicking the VPN connection. In addition to the encryption settings in the AWS configuration file, the following settings are supported:

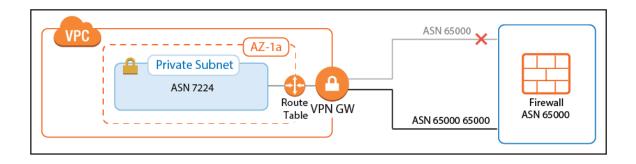
- Encryption AES, AES256
- Hash SHA1, SHA256


- Phase 1 DH-Group Group 2 and Group 14-18
- Phase 2 DH-Group Group 1, 2, 5 and Group 14-18


Site-to-Site	(i) Status								Sele	ction	Filte	r NA (95	(C:0 (100 199) - SS	100) - Clie iL: 0	nts:0
Name	Tunnel	Group	Local	Peer	Info	Transport	Encryption	Auth	Compression	NAC	bps10	Total	Idle	Start	Key
I single transport tunnel (10)															
Lab2AW/STransit/PC2	TINA		127.0.0.9	80.120.67.26		UDP	AES 128	MD5	0%		720 B	5636 K	0 :	4 h	8 m
SP1primTUN1-169.254.42.117-169.254	IPSEC-IKEv1	10	10.100.0.10	52.57.136.227		ESPoUDP	AES 128	SHA	0%		320 B	3338 K	0 s	4 h	29 m
SP1primTUN2-169.254.41.61-169.254	IPSEC-IKEv1	10	10.100.0.10	52.58.145.227		ESPoUDP	AES 128	SHA	0%		0.8	427 K	7 8	4 h	23 m
SP2primTUN1-169.254.40.165-169.254	IPSEC-IKEv1	100	10.100.0.10	52.29.25.146		ESPoUDP	AES 128	SHA	0%		0 B	166 K	13 :	4 h	35 m
SP2primTUN2-169.254.40.89-169.254	IPSEC-IKEv1	8	10.100.0.10	52.58.175.210		ESPoUDP	AES 128	SHA	0%		320 B	3401 K	0 :	4 h	24 m

For step-by-step instructions, see Step 2 in 3.9 How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP (page 121)


Configure BGP on the Transit VPC Firewalls


The BGP service on the firewall learns and propagates the routes from each location. Create a BGP neighbor configuration for each IPsec tunnel and each on-premises network connected to the Transit VPC. If you are not using a static route in the spoke VPCs routing table, propagate the default route to the BGP neighbor for each spoke VPC. The VPN gateway automatically propagates the VPC network via BGP. Since spoke VPCs are always connected by two parallel IPsec tunnels, the route over one IPsec tunnel should be preferred over the other.

Configure the BGP service on each firewall to exchange information with the BGP service on the other side of the VPN tunnels. Using **Route Maps**, modify the routes learned for the second of the parallel IPsec connections. By lengthening the AS PATH of the IPsec tunnels, traffic is sent through the first tunnel at all times, unless the tunnel is down.

For step-by-step instructions, see Step 3 in

3.9 How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP (page 121)

Create Access Rules to Allow Traffic

By default, the Forwarding Firewall service blocks all traffic not explicitly allowed by an access rule. Since all traffic is routed through the Transit VPC, create access rules to allow access for individual services and/or entire networks. Access rules allowing traffic through the AWS VPN gateway IPsec tunnels must set the following advanced access settings:

- Force MSS (Maximum Segment Size) Set to 1387.
- Clear DF Bit Set to yes.
- **Reverse Interface (Bi-directional)** If you are using two parallel IPsec tunnels per firewall, set this to **Any**. This allows the traffic to use either IPsec tunnel.

Be sure to sync the access rules on both firewalls to make sure that the behavior is identical no matter which firewall the traffic is sent through.

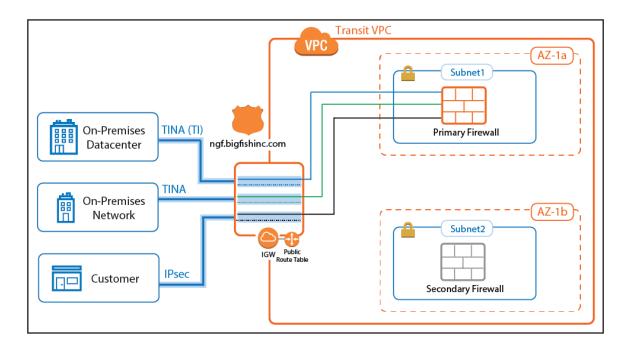
For step-by-step instructions, see Step 4 in 3.9 How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP (page 121)

Launching EC2 Instances in Spokes

If your Transit VPC is created with spokes in a single CloudFormation template, the instances will not have Internet access during launch. Use NAT gateways or VPC endpoints in the spoke VPC to access AWS services before the VPN connection and BGP routing to the firewall is configured.

If your spoke is already connected, verify that access rules are in place that allow the new instance access to all resources required during the provisioning process. If unsure, log into the active firewall and use the **Firewall > History** page in NextGen Admin to check if traffic from the instance was blocked.

For more information, see NextGen Admin History Page.


2.4.3 Connecting to On-Premises Networks

To be able to forward traffic between your AWS VPC and your on-premises networks, create site-to-site VPN tunnels between the High Availability Cluster in the Transit VPC and the VPN gateways in each remote location.

The networks of the spoke VPC are propagated via BGP over the VPN tunnels. BGP is used to propagate the AWS VPC

networks to your on-premises locations. Depending on the remote device, you can use either Barracuda's proprietary TINA

VPN or the industry standard IPsec VPN protocol. Failover and preference of the VPN tunnel to the primary firewall is handled by BGP.

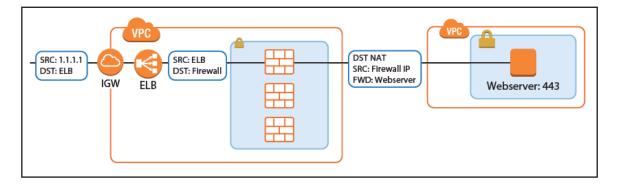
TINA Site-to-Site VPN Tunnels to F-Series Firewalls

If the remote location uses an F-series Firewall, you can take advantage of the TINA VPN protocol. TINA offers many enhancements not featured in the standard IPsec protocol, such as Traffic Intelligence, Traffic Compression, and WAN Optimization. Traffic Intelligence is a logical layer used to manage multiple parallel VPN tunnels (transports) in one VPN tunnel configuration. So if your remote location has multiple Internet connections (perhaps in combination with AWS Direct Connect), all connections can be combined into one VPN tunnel. Traffic Intelligence patterns in the connection object of the access rule determine how the traffic is distributed over the VPN transports and failover behavior. WAN Optimization and Compression reduces the amount of traffic sent through the tunnel by using data deduplication .

For more information, see How to Configure BGP Routing over a TINA VPN Tunnel, Traffic Intelligence, and WAN Optimization.

IPsec Site-to-Site VPN Tunnels to Third-Party Devices

Third-party VPN gateways can be connected via IPsec IKEv1 or IKEv2 VPN tunnels. The remote device must support routing BGP over IPsec tunnels to be able to learn the routes. Create one IPsec tunnel from the active EIP for each on-premises location.

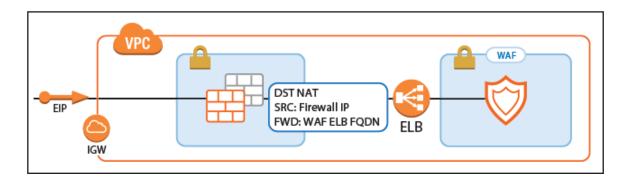

For more information, see 3.9 How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP (page 121)

Create Access Rules for On-Premises Networks

Just like when connecting the spoke VPCs, the firewall blocks all traffic by default. To allow connections to the networks learned via BGP, create pass access rules on both firewalls. These rules must be the same on both firewalls to ensure that if the connection fails over to the secondary firewall, the same policies are applied. Access rules to cloud services connected to the Transit VPC via VPC peering must translate the source IP address to the IP address of the DHCP interface of the firewall to satisfy the AWS restriction on peering that transitive VPCs are not allowed.

Internet to Backend Services

Create the following access rule to forward traffic from the Internet to an internal web server.


- Action Select Dst NAT.
- Source Select Any or a network object containing the networks the ELB is deployed in.
- Service Select the service. e.g., HTTP+S.
- Destination Select DHCP1 Local IP.
- Connection Method Select Dynamic NAT or Translated from DHCP Interface.
- Redirection Target Enter the IP address of the backend service. Optionally, append the port number to redirect to a

different port. e..g, 10.100.1.2 or 10.100.1.2:8080

	INET-to-WebSRVs	
St NAT	¥	
r Bi-Directional	💿 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule
Source	Service	Destination
Any	 HTTPS 	✓ DHCP1 Local IP ✓
0.0.0/0	TCP 443 https Report if not	(SSL)
		Redirection
		Target List Reference
		10.100.1.2:8080
		Fallback 🗸
		List of Critical Ports
Authenticated User	Policies	Connection Method
Any	IPS Policy	Translated IP from DHCP Interface <
	Default Policy	Network Interface
	Application Policy	dhcp
	AppControl, URL.Fil	uncp
	Schedule	
	Always	~
	QoS Band (Fwd)	
	VoIP (ID 2)	\checkmark
	QoS Band (Reply)	
	Like-Fwd	\sim

Redirect Traffic through a WAF Cluster or Other Service Behind an Internal ELB

Services behind an internal ELB can also be forwarded via Dst NAT access rule.

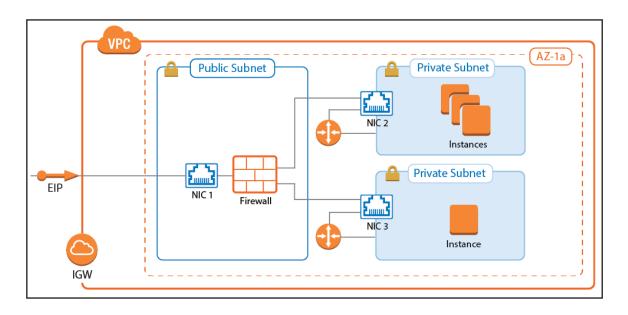
1. Create a hostname network object for the internal DNS name of the ELB, set the DNS Lifetime to 30 seconds, and click

Send Changes.

Edit/Creat	te Network Object	_
Genera	1	
Type	Hostname (DNS Resolved)	
Name	internal-DOC-Internal-ELB-1029999116.eu-we Resolve	
	DNS Lifetime (Sec) 30	

- 2. Create the access rule:
 - Action Select Dst NAT.
 - Source Select Any or a network object containing the networks the ELB is deployed in.
 - Service Select the service. e.g., HTTP+S.
 - Destination Select DHCP1 Local IP.

- Connection Method Select Dynamic NAT or Translated from DHCP Interface.
- Redirection Target Click Reference and select the network object for the ELB.


Dst NAT	INET-to-INTERNAL-ELB	
- DST NAT	×	
🛹 📃 Bi-Directional	💍 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule
Source	Service	Destination
Any	HTTP+S	✓ DHCP1 Local IP ✓
0.0.0/0	Ref: HTTP	
	Ref: HTTPS	
		Redirection
		Target List Reference 🗹
		internal-DOC-Internal-ELB-1029999 🗸
		Fallback
		List of Critical Ports
		80 443
Authenticated User	Policies	Connection Method
Any	V IPS Policy Default Policy	✓ Translated IP from DHCP Interface ✓
	Application Policy	Network Interface
	No AppControl	dhcp
	Schedule	
	Always	~
	QoS Band (Fwd)	
	VoIP (ID 2)	~
	QoS Band (Reply)	
	Like-Fwd	~

2.5 Segmentation Firewall for Single AZ VPCs

A NextGen Firewall F with multiple network interfaces can be used as a segmentation firewall for your private subnets in the VPC. Traffic passing between the private subnets is routed through the firewall, where you can apply security policies and visualize traffic in real time between the subnets. To be able to route the traffic over the firewall, the standard route for internal VPC traffic must be circumvented. By default, all traffic within the VPC is routed over the default gateway. This route cannot be overridden by other more specific routes, nor can it be changed to use the firewall as the gateway instead. Using a combination of a firewall instance with multiple network interfaces and adding a route on the client instances allows you to use the F-Series Firewall as a segmentation firewall in AWS.

Use a segmentation firewall to enforce access policies and monitor traffic passing between the subnets. When compared with an AWS native solution, a NextGen Firewall is vastly superior regarding the depth at which both traffic can be inspected and security policies applied. In addition, NextGen Admin also provides real-time traffic visibility, and the Firewall Live and History pages allow quick, fine-grained access to all the traffic currently passing through the firewall.

For the firewall, select the instance type according to the number of network interfaces. The number of network interfaces is the number of private subnets plus one for the public subnet. At least three network interfaces are required. The instance type must support at least three network interfaces: one for the public subnet and two for the private subnets.

2.5.1 Use Cases for a Multi-NIC Segmentation Firewall

A NextGen Firewall Segmentation is deployed like an internal firewall for applications moved to AWS using lift-and-shift

migrations.

2.5.2 Limitations

- All resources must be in a single Availability Zone.
- The number of private subnets is limited by the number of network interfaces supported by the instance type. So if the firewall supports three network interfaces, two private subnets can be connected. The primary network interface is used for external connectivity.
- A route must be added to the client instances in the private subnets. The default route over the gateway in the subnet bypasses the firewall. This can be stopped via Security Groups.
- Cannot be deployed as a High Availability Cluster.
- Connecting to subnets in other Availability Zones requires use of source NAT on the matching access rule.

2.5.3 Deploying a Segmentation Firewall via CloudFormation Template

It is recommended to deploy the Segmentation Firewall via a CloudFormation template. The template deploys one firewall that is automatically joined into the High Availability Cluster in the public subnets. The route table associated with the private subnets is configured to use the active firewall as the outbound gateway. This template only deploys the AWS infrastructure. The NextGen Firewall must be configured manually.

1. Create an IAM role for the firewall cluster. For step-by-step instructions, see

3.1 How to Create an IAM Role for an F-Series Firewall in AWS (page 79)

2. Download the NGF_Segmentation.json template and parameter file from the Barracuda Network GitHub account:

https://github.com/barracudanetworks/ngf-aws-templates.

- 3. Accept the Software Terms for the Barracuda NextGen Firewall PAYG or BYOL image in the AWS Marketplace.
- 4. Create a parameter template file containing your parameters values.
- 5. Deploy the template via AWS CLI or AWS console.

aws cloudformation create-stack --stack-name "YOUR_STACK_NAME"
--template-body YOUR_S3_BUCKET/NGF_Segmentation.json --parameter YOUR_
S3_BUCKET/NGF_Segmentation_parameters.json

During deployment, the following resources are created by the template:

- One VPC with one public and two private subnets in the same AZ.
- One Barracuda NextGen Firewall with three ENIs.

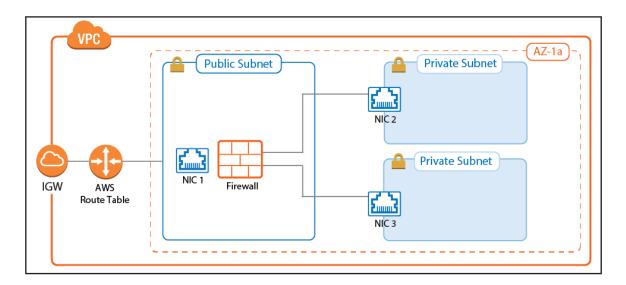
For step-by-step instructions on how to deploy a CloudFormation template, see 3.10 How to Deploy an F-Series Firewall in

AWS via CloudFormation Template (page 139)

2.5.4 (Alternative) Deploying a Segmentation Firewall via AWS Console

Complete the following configuration steps to deploy the NextGen Firewall F as a segmentation firewall. For more detailed

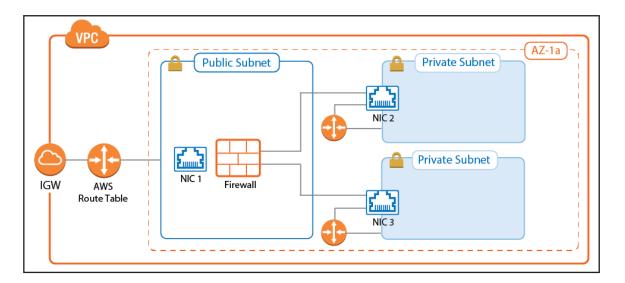
descriptions, follow the links for step-by-step instructions.


Create a VPC with the public and private subnets all in one Availability Zone.

- Launch a NextGen Firewall instance into the public subnet.
- Add an additional ENI per private subnet.

For step-by-step instruction, see 3.11 How to Deploy an F-Series Firewall in AWS via Web Portal (page 143)

2.5.5 Adding Additional Network Interfaces for Each Private Subnet


The firewall must have a network interface in each private subnet. Create an AWS elastic network interface (ENI) for each private subnet in your VPC. The private IP address must be set explicitly to be able to configure the network interface statically. Also, disable the source/destination check for each interface to be able to process traffic with a destination address not matching the private IP of the network interface. Before attaching the ENIs to the firewall, shut the firewall instance down. Attach the network interfaces. After starting the firewall, configure the new network interfaces and add the required direct attached routes and virtual server IP addresses.

For step-by-step instructions, see 3.4 How to Add AWS Elastic Network Interfaces to a Firewall Instance (page 95)

Route Table for Private Subnets

For each private subnet, a dedicated AWS route table handles all traffic with destinations outside the VPC. Associate the subnet with the route table and create a default route with the network interface of the firewall in this subnet as the target.

For step-by-step instructions, see 3.5 How to Configure AWS Route Tables for Firewalls with Multiple Network Interfaces (page 101)

2.5.6 Deploying Instances to Use the Firewall as Default Gateway

It is not currently possible to configure the AWS route table to send traffic between two subnets through the firewall instance. By default, each route table includes a static route for the VPC pointing to the AWS gateway of the subnet. This route cannot be overridden by a more specific route, nor can it be deleted. To send traffic via the firewall, add a route directly on the instance. The route can be added either manually after the instance has been deployed, or automatically in the **User data** section.

AWS Console (Linux Instances Only)

Add the routes to **User data** field of the **Advanced Details** section.

 Advanced Details 	
User data (j	●As text ○As file □Input is already base64 encoded
	/sbin/route add -net 10.100.0.0/16 gw 10.100.2.6
	ii.

CloudFormation (Linux Instances Only)

Add the definition for the routes in the UserData section of the CloudFormation template. If multiple private subnets are

used, more than one route may be required.

>	"UserData": {	"Fn::Base64": { "Fn::Join": [
	10.100.2.6", } },	<pre>"", ["#!/bin/bash\n\n", "/sbin/route add -net 10.100.1.0/16 gw "\n"]] }</pre>

Manually (Linux Instances Only)

Log into the instance via SSH, and with root privileges enter:

root@ip-10-100-2-10:/home/ubuntu# route add -net 10.100.0.0/16 gw 10.100.2.6

The route is now in the route table. Enter route -n to list the routes:

root@ip-10-10 Kernel IP rou	0-2-10:/home/ubu ting table	ntu# route -n					
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
0.0.0.0	10.100.2.1	0.0.0.0	UG	0	0	0	eth0
10.100.0.0	10.100.2.6	255.255.0.0	UG	0	0	0	eth0
10.100.2.0	0.0.0.0	255.255.255.0	U	0	0	0	eth0
root@ip-10-10	0-2-10:/home/ubu	ntu#					

Firewall Service Configuration

Now that the routing and setup in AWS is complete, access rules must be configured to apply your security policies to the

traffic passing between the VPC subnets:

Network objects – Create network objects for the VPC, for each subnet, and for individual instances. For more

information, see Network Objects.

 Access rules – By default, all connections are blocked. Create access rules for each service the instances are allowed to access. Use the FIREWALL > Live and FIREWALL > History pages to verify which rule matches and which traffic is

blocked. For more information, see Live Page and History Page.

Access rules allowing the backend instances access to the Internet must use the **Dynamic NAT** connection objects to rewrite

the source IP of the packets to the IP address of the firewall.

Step-by-Step Guides

3.1	How to Create an IAM Role for an F-Series Firewall in AWS	79
3.2	How to Configure Log Streaming to AWS CloudWatch	87
3.2.1	Before You Begin	87
3.3	How to Restore a Configuration on a PAYG Firewall in the Public Cloud	93
3.3.1	Before You Begin	93
3.43.4.13.4.23.4.3	How to Add AWS Elastic Network Interfaces to a Firewall Instance AWS Reference Architectures Before You Begin Next Steps	95 95 95 100
3.5	How to Configure AWS Route Tables for Firewalls with Multiple Network Interfaces	101
3.5.1	AWS Reference Architectures	101
3.5.2	Before You Begin	101
3.6	How to Modify CloudFormation Templates to Retrieve the PAR File from a Control Center	105
3.6.1	Before You Begin	105
3.6.2	Next Steps	110
3.7	How to Create a TINA VPN Tunnel between F-Series Firewalls	111
3.7.1	Next Step	117
3.8	How to Create a Geo Location based Network Object	119
3.8.1	Create a Network Object	119
3.9	How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP	121
3.9.1	Before You Begin	121
3.10	How to Deploy an F-Series Firewall in AWS via CloudFormation Template	1 39
3.10.1	CloudFormation Templates	139
3.10.2	Before You Begin	139
3.11	How to Deploy an F-Series Firewall in AWS via Web Portal	143
3.11.1	Next Steps	154
3.12	How to Deploy a NextGen Firewall Auto Scaling Cluster in AWS	155
3.12.1	AWS Reference Architectures	156
3.13	How to Configure Scaling Policies for a NextGen Firewall Auto Scaling Cluster	161

Step-by-Step Guides

3.14	How to Configure an AWS Elastic Load Balancer for F-Series Firewalls in AWS	165
3.14.1	AWS Reference Architectures	165
3.14.2	Create an AWS Load Balancer	165
3.15	How to Configure Route 53 for F-Series Firewalls in AWS	169
3.15.1	Alternative	169
3.15.2	Before You Begin	169
3.16	How to Configure a Client-to-Site VPN Group Policy for a NextGen Firewall Au	to Scaling
	Cluster in AWS	175
3.16.1	Supported Clients	175
3.16.2	Before You Begin	175
3.16.3	Configure a Custom Login Message	181
3.16.4	Troubleshooting	181
3.16.5	Next Steps	181
3.17	How to Configure the SSL VPN Services for AWS Auto Scaling Clusters	183
3.17.1	Before You Begin	183
3.17.2	Troubleshooting	188

3.1 How to Create an IAM Role for an F-Series Firewall in AWS

IAM roles are the preferred method for NextGen Firewall instances in AWS to authenticate against AWS APIs. For each feature that requires direct access to AWS resources, a customized IAM policy must be created. These policies are then attached to the IAM role assigned to the instance during deployment. It is not possible to add a role to an existing instance. It is possible, however, to change the IAM policies attached to the IAM role on the fly. If an Access Key ID and Secret Access Key are configured in AWS cloud integration, they take precedence over the IAM role attached to the instance. In order to use all firewall features, the following IAM security policies must be created and attached to the IAM role:

- Cloud Information element
- Route shifting (includes Cloud Information dashboard element)
- AWS CloudWatch streaming
- AWS Auto Scaling or cold standby S3 bucket access

Step 1. Create IAM Policy for Route Shifting

Create an IAM policy to allow route shifting.

- 1. Log into the AWS console.
- 2. Click Services and select IAM.
- 3. In the left menu, click **Policies**.
- 4. Click Create Policy.

5. Next to Create Your Own Policy, click Select.

Create Your Own Policy Use the policy editor to type or paste in your own policy.	Select

- 6. Configure the IAM policy:
 - Policy Name Enter a name for the policy.
 - (optional) Description
 - Policy Document Copy and paste the following policy:

NGF_Route_Shifting Description IAM policy for NextGen Firewall High Availability Cluster. Policy Document 1 * { 2 "Version": "2012-10-17", 3 * "Statement": [4 * 5 "Effect": "Allow", "Action": ["ec2:AllocateAddress", 9 10 "ec2:DescribeAddresss", 11 "ec2:DescribeInstances", 12 13 "ec2:DescribeSubnets", "ec2:DescribeSubnets", "ec2:DescribeSubnets", "ec2:DescribeSubnets", "ec2:DescribeSubnets",	Policy Name			
<pre>Policy for NextGen Firewall High Availability Cluster. Policy Document</pre>	NGF_Route_	Shifting		
Policy Document 1 * { 2 "Version": "2012-10-17", 3 * "Statement": [4 * { 6 * "Action": [7 8 "ec2:AllocateAddress", 9 10 "ec2:DescribeAddresses", 11 "ec2:DescribeInstances", 12 "ec2:DescribeSubnets", 13 "ec2:DescribeSubnets", 14	Description			
<pre>''''''''''''''''''''''''''''''''''''</pre>	IAM polic	/ for NextGen Firewall High Availability Cluster.		
<pre>''''''''''''''''''''''''''''''''''''</pre>				
<pre>'' { ''Version": "2012-10-17", ''Statement": [''Statement": [''Statement": [''Cersion ''Cersion': [''ec2:AllocateAddress", ''ec2:AllocateAddress", ''ec2:DescribeAddresses", ''ec2:DescribeInstances", ''ec2:DescribeInstances", ''ec2:DescribeSubnets", ''ec2:DescribeBouteTables", ''ec2:Descri</pre>				
<pre>'' { 'Version": "2012-10-17", ''Statement": [''Statement": [''Statement": [''Action": [''action": [''action": [''action": [''ac2:AllocateAddress", ''ac2:DescribeAddresses", ''ac2:DescribeInstances", ''ac2:DescribeInstances", ''ac2:DescribeInstances", ''ac2:DescribeSubnets", ''ac2:DescribeRouteTables", ''ac2:DescribeRouteTables", ''ac2:DescribeRouteTables", ''ac2:DescribeRouteTables", ''ac2:DescribeRouteTables", '''ac2:DescribeRouteTables", '''ac2:DescribeRouteTables", '''''''''''''''''''''''''''''''''</pre>				
<pre>2 "Version": "2012-10-17", 3 "Statement": [4 { 5 "Effect": "Allow", 6 " "Action": [7 "ec2:AllocateAddress", 8 "ec2:AssociateAddress", 9 "ec2:DescribeAddresses", 10 "ec2:DescribeInstances", 11 "ec2:DescribeInstances", 12 "ec2:DescribeVpcs", 13 "ec2:DescribeVpcs", 14 "ec2:DescribeSubnets", 14 "ec2:DescribeBouteTables".</pre>	Policy Docur	nent		
<pre>3- "Statement": [4- 5 "Effect": "Allow", 6- "Action": [7 "ec2:AllocateAddress", 8 "ec2:AssociateAddresss", 9 "ec2:DescribeAddresses", 10 "ec2:DescribeInstances", 11 "ec2:DescribeInstances", 12 "ec2:DescribeVpcs", 13 "ec2:DescribeSubnets", 14 "ec2:DescribeRouteTables".</pre>				^
<pre>4 - 5 "Effect": "Allow", 6 - "Action": [7 "ec2:AllocateAddress", 8 "ec2:AssociateAddress", 9 "ec2:DescribeAddress", 10 "ec2:DisassociateAddress", 11 "ec2:DescribeInstances", 12 "ec2:DescribeInstances", 13 "ec2:DescribeSubnets", 14 "ec2:DescribeBouteTables".</pre>				
<pre>5 "Effect": "Allow", 6 " "Action": [7 "ec2:AllocateAddress", 8 "ec2:AssociateAddress", 9 "ec2:DescribeAddresses", 10 "ec2:DisassociateAddress", 11 "ec2:DescribeInstances", 12 "ec2:DescribeVpcs", 13 "ec2:DescribeVpcs", 14 "ec2:DescribeSubnets", 14 "ec2:DescribeBouteTables".</pre>		"Statement":		
<pre>6- "Action": [7</pre>		t "Effect", "Alley"		
<pre>7 "ec2:AllocateAddress", 8 "ec2:AssociateAddress", 9 "ec2:DescribeAddresse", 10 "ec2:DisassociateAddress", 11 "ec2:DescribeInstances", 12 "ec2:DescribeVpcs", 13 "ec2:DescribeSubnets", 14 "ec2:DescribeRouteTables".</pre>				
<pre>8 "ec2:AssociateAddress", 9 "ec2:DescribeAddresses", 10 "ec2:DisassociateAddress", 11 "ec2:DescribeInstances", 12 "ec2:DescribeSubnets", 13 "ec2:DescribeSubnets", 14 "ec2:DescribeBouteTables".</pre>				
9 "ec2:DescribeAddresses", 10 "ec2:DisassociateAddresse", 11 "ec2:DescribeInstances", 12 "ec2:DescribeVpcs", 13 "ec2:DescribeSubnets", 14 "ec2:DescribeBouteTables".				
10 "ec2:DisassociateAddress", 11 "ec2:DescribeInstances", 12 "ec2:DescribeVpcs", 13 "ec2:DescribeSubnets", 14 "ec2:DescribeRouteTables".				
11 "ec2:DescribeInstances", 12 "ec2:DescribeVpcs", 13 "ec2:DescribeSubmets", 14 "ec2:DescribeBouteTables".	10			
12 "ec2:DescribeVpcs", 13 "ec2:DescribeSubnets", 14 "ec2:DescribeBouteTables".	11			
13 "ec2:DescribeSubnets", 14 "ec2:DescribeRouteTables".	12			
	13			
	14			~
Use autoformatting for policy editing Cancel Validate Policy Previous Create Policy	🖌 Use aut	oformatting for policy editing	Cancel Validate Policy Previous	Create Policy

7. Click Create Policy.

The IAM policy for route shifting is now available to be assigned to an IAM role for the NextGen Firewall.

NGF_Route_Shifting has Now you are ready to attach your	
---	--

Step 2. Create IAM Policy for the Cloud Information Dashboard Element

Create this policy only if you are not using the route shifting IAM policy. The route shifting IAM policy includes all permissions

necessary for the Cloud Information element.

- 1. Log into the AWS console.
- 2. Click **Services** and select **IAM**.
- 3. In the left menu, click **Policies**.
- 4. Click Create Policy.
- 5. Next to Create Your Own Policy, click Select.

Configure the IAM policy:

- Policy Name Enter a name for the policy.
- (optional) Description
- Policy Document Copy and paste the following policy:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "ec2:DescribeInstances",
                "ec2:DescribeVpcs",
                "ec2:DescribeSubnets",
                "ec2:DescribeRouteTables"
            ],
            "Resource": [
                "arn:aws:ec2:::*"
            ]
        }
    ]
}
```

Policy Nam	10	
NGF_CloudInformation_Element		
Descriptio	n	
Retrieve Firewall	information to be displayed in the Cloud Information element of the NextGen .	
Policy Doc	ument	
1-{		
2 3 •	"Version": "2012-10-17", "Statement": [
2 ¥ 4 ¥	Statement : [
5	"Effect": "Allow",	
6 -	"Action":	
7	"ec2:DescribeInstances",	
8	"ec2:DescribeVpcs",	
9	"ec2:DescribeSubnets",	
10	"ec2:DescribeRouteTables"	
11],	
12 -	"Resource":	
13	"arn:aws:ec2:::*"	
	1	
14		
14 15	}	

The IAM policy for the Cloud Information element is now available to be assigned to an IAM role for the NextGen Firewall.

Step 3. Create IAM Policy for Log Streaming to AWS CloudWatch

This IAM policy grants the firewall the necessary permissions to stream logs to AWS CloudWatch.

- 1. Log into the AWS console.
- 2. Click **Services** and select **IAM**.
- 3. In the left menu, click Policies.
- 4. Click Create Policy.
- 5. Next to Create Your Own Policy, click Select.
- 6. Configure the IAM policy:
 - Policy Name Enter a name for the policy.
 - (optional) Description
 - **Policy Document** Copy and paste the following policy:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                 "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:PutLogEvents",
                 "logs:DescribeLogStreams",
                 "logs:DescribeLogGroups"
            ],
            "Resource": [
                 "arn:aws:logs:*:*:*"
            ]
        }
    ]
}
```

Policy Name				
IGF_CloudWatch				
escription				
llow the firewall to create log groups and stream logs to AWS CloudWa	atch.			
olicy Document				
<pre>1 * { 2 "Version": "2012-10-17", 3 * "Statement": [4 * { 5</pre>	Â			
9 "logs:CreateLogStream", 9 "logs:PutLogEvents", 10 "logs:DescribeLogStreams", 11 "logs:DescribeLogGroups" 12], 13 "Resource": [
14 "arn:aws:logs:::*", 15] 16 } 17] 18 }				
16 } 17]	V Previous Create Policy			

7. Click Create Policy.

The IAM policy for streaming logs to AWS CloudWatch is now available to be assigned to an IAM role for the NextGen Firewall.

Step 4. Create IAM Policy for AWS Auto Scaling Group Deployments

This IAM policy grants the necessary permissions for Auto Scaling and cold standby architectures for the NextGen Firewall.

- 1. Log into the AWS console.
- 2. Click Services and select IAM.
- 3. In the left menu, click **Policies**.
- 4. Click Create Policy.
- 5. Next to Create Your Own Policy, click Select.
- 6. Configure the IAM policy:
 - Policy Name Enter a name for the policy.
 - (optional) Description
 - **Policy Document** Copy and paste the following policy:

```
{
   "Version": "2012-10-17",
   "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "ec2:AllocateAddress",
                "ec2:AssociateAddress",
                "ec2:DescribeAddresses",
                "ec2:DisassociateAddress",
                "ec2:CreateRoute",
                "ec2:DescribeRouteTables",
                "ec2:ReplaceRoute",
                "ec2:DeleteRoute",
                "ec2:CreateTags",
                "ec2:DescribeInstances",
                "ec2:DeleteTags",
                "ec2:DescribeTags",
                "ec2:ModifyInstanceAttribute"
            ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [
                "autoscaling:CreateOrUpdateTags",
                "autoscaling:DeleteTags",
                "autoscaling:DescribeAutoScalingGroups",
                "autoscaling:DescribeAutoScalingInstances",
                "autoscaling:DescribeTags",
                "autoscaling:SetInstanceProtection"
            ],
            "Resource": "*"
        },
        {
            "Action": [
                "sqs:CreateQueue",
                "sqs:DeleteMessage",
                "sqs:DeleteQueue",
                "sqs:GetQueueAttributes",
                "sqs:ReceiveMessage",
                "sqs:SetQueueAttributes",
                "sqs:GetQueueUrl"
            ],
            "Effect": "Allow",
            "Resource": "arn:aws:sqs:*"
        },
        {
            "Action": [
                "sns:CreateTopic",
                "sns:Publish",
                "sns:Subscribe",
                "sns:Unsubscribe",
                "sns:ListSubscriptionsByTopic"
            ],
            "Effect": "Allow",
            "Resource": "arn:aws:sns:*"
        },
        {
            "Action": [
```


Policy Name					
NGF_AutoSc	NGF_AutoScaling				
Description					
IAM Role f	For NextGen Firewall Auto Scaling and Cold Standby Clusters.				
					.i.
Policy Docum	nent				
1-{					^
2	"Version": "2012-10-17",				
3 -	"Statement": [
4 -	{				
5	"Effect": "Allow",				
6 -	"Action": [
7	"ec2:AllocateAddress",				
8	"ec2:AssociateAddress",				
9	"ec2:DescribeAddresses",				
10	"ec2:DisassociateAddress",				
11	"ec2:CreateRoute",				
12	"ec2:DescribeRouteTables",				
13	"ec2:ReplaceRoute",				
14	"ec2.DeleteRoute"				*
V Lise auto	oformatting for policy editing	Cancel	Validate Policy	Previous	Create Policy
Jac auto	soundaring for policy curring		valuate Policy	r revious	oreater oncy

7. Click Create Policy.

The IAM policy for AWS Auto Scaling and cold standby architectures is now available to be assigned to an IAM role for the

NextGen Firewall.

NGF_AutoScaling has been created. You are now ready to attach your policy to users, groups, and roles.	×
--	---

Step 5. Create the IAM Role

Create the IAM role and assign the IAM policies for all NextGen Firewall Cloud Integration features used by the firewall

Instance.

- 1. Log into the AWS console.
- 2. Click **Services** and select **IAM**.
- 3. In the left menu, click **Roles**.
- 4. Click Create New Role.

- 5. Enter the Role Name.
- 6. Click Next Step.
- 7. In the AWS Service Roles section, next to Amazon EC2 click Select.

,	Select Role Type				
	AWS Service Roles				
		^			
	> Amazon EC2				
	Allows EC2 instances to call AWS services on your behalf.	Select			

- 8. Select the IAM firewall policies you just created.
- 9. Select the policies only for features that will be used in the deployed firewall instance. You can change the attached IAM

policies later if required.

elect one	elect one or more policies to attach.					
Filter	Customer Managed NGF_	3F_		Showing 5 results		
	Policy Name 🗢	Attached Entities 👻	Creation Time 🗢	Edited Time 🗢		
	NGF_CloudInformation_Element	1	2017-01-18 12:19 UTC+0200	2017-01-18 12:19 UTC+0200		
✓	NGF_CloudWatch	1	2017-01-18 12:24 UTC+0200	2017-01-18 12:24 UTC+0200		
~	NGF_Route_Shifting	1	2017-01-18 11:13 UTC+0200	2017-01-18 11:13 UTC+0200		
	NGF_AutoScaling	0	2017-06-12 11:12 UTC+0200	2017-06-12 11:12 UTC+0200		

- 10. Click Next Step.
- 11. Review the settings and click **Create Role**.
- 12. Assign this role to the NextGen Firewall instance during deployment.

3.2 How to Configure Log Streaming to AWS CloudWatch

To stream log data from your firewall to AWS CloudWatch, you must configure AWS Cloud Integration and configure syslog streaming on the firewall. The destination is AWS CloudWatch. The configured log group is automatically created, and the logs are placed into a folder using either the instance ID or the hostname as the name.

3.2.1 Before You Begin

The firewall must be deployed with an IAM role that allows access to AWS CloudWatch. For more information, see

3.1 How to Create an IAM Role for an F-Series Firewall in AWS(page 79)

	{		
>	~ V	ersion":	~2012-10-17 <i>"</i> ,
-	"S	tatement	": [
		{	
		"E	ffect": "Allow",
		"A	ction": [
			"logs:CreateLogGroup",
			"logs:CreateLogStream",
			"logs:PutLogEvents",
			"logs:DescribeLogStreams",
			"logs:DescribeLogGroups"
],	
		"R	esource": [
			"arn:aws:logs:*:*:*"
]	
		}	
]		
	}		

Step 1. Enable Syslog Streaming

Enable syslog streaming and, optionally, configure the AWS region if it is different from the region of the firewall instance.

1. Go to CONFIGURATION > Full Configuration > Box > Infrastructure Services > Syslog Streaming.

- 2. Click Lock.
- 3. Set Enable Syslog Streaming to yes.

Operational Setup				
Enable Syslog Streaming	yes 🗸 🗸	٦.		
Max Queued Messages	10000	∎.		
TCP Retry Interval [s]	3	Ē,		

4. In the left menu, expand the **Configuration Mode** section and click **Switch to Advanced View**.

- 5. (optional) Enter the AWS CloudWatch region. e.g., eu-west-1
- 6. Click Send Changes and Activate.

Step 2. Configure Logdata Filters

Define profiles specifying the log file types to be transferred / streamed. Log file are classified into top level, box level, and

service level log data sources.

- 1. Go to CONFIGURATION > Full Configuration > Box > Infrastructure Services > Syslog Streaming.
- 2. In the left menu, select Logdata Filters.
- 3. Click **Lock**.
- 4. In the Filters table, click + to add a new filter. The Filters window opens.
- 5. Enter a **Name**.
- 6. Click **OK**.
- 7. In the Data Selection table, add the Top Level Log Files log files to be streamed. You can select:
 - Fatal_log
 - Firewall_Audit_Log- The firewall audit log must be enabled and configured, and Audit Delivery must be set

to Syslog Proxy. For more information, see How to Enable the Firewall Audit Log Service. Alternatively, the firewall

audit log can also be streamed as a part of the firewall service logs.

• Panic_log

Top Level Logdata Data Selection	• ×	
	Fatal_Log Panic_Log Firewall_Audit_Log	

- 8. Configure the **Box Level Logfile** filters:
 - a. From the **Data Selector** list, select which files for this category are streamed:
 - All All box level logs are streamed.
 - None Box level logs are not streamed.
 - Selection Only box level log files defined in the Data Selection list are streamed.

Box Level Logfiles		
Data Selector	Selection	× 🗊
Data Selection		🥖 🖶 🗙 🗤 🖨 🛐 🗐
	Name DATA01	Log Groups Log Message Filter Cloud_awscorfigeynod , All
	۲	>

- b. (Selection only) Click + to add custom filters to the Data Selection table.
 - i. In the Log Groups table, click +.
 - ii. Select the box level log files, or select Other to enter a user defined log group pattern to stream log files

matching this pattern.

- iii. (optional) From the Log Level Filter list, select the message types from the log group that are streamed.
- iv. (Selection only) In the Selected Messages Types table, click + to add message types.

Data Selection				
Log Groups		÷	×	Ē٠
	Cloud-AWS-Config-Sync-Daemon			
	Cloud-AWS-Log-Daemon			
Log Message Filter	All		\sim	.
Selected Message Types		Φ.	×	.

- 9. Configure the Service Level Logfile filters:
 - a. From the **Data Selector** list, select which files for this category are streamed:
 - All All service logs are streamed.
 - None Service level logs are not streamed.
 - Selection Only service level log files defined in the Data Selection list are streamed.
 - b. (Selection only) Click + to add custom filters to the Data Selection table.
 - i. In the Log Groups table, click +.
 - ii. Select the box level log files, or select **Other** to enter a **user defined log group pattern** to stream log files matching this pattern.
 - iii. (optional) From the Log Level Filter list, select the message types from the log group that are streamed.
 - iv. (Selection only) In the Selected Messages Types table, click + to add message types.
 - v. Click **OK**.

Data Selection			
Log Groups		₽ ×	۰.
	VPN Service		
	SNMP Service		
	DNS		
Log Message Filter	All	\sim	۰.
Selected Message Types		+ X	۰.

Step 3. Configure AWS CloudWatch as the Logstream Destination

Configure the firewall to send the syslog stream to AWS CloudWatch. The AWS CloudWatch log group name is created

automatically, with one stream per firewall.

1. Go to **CONFIGURATION > Full Configuration > Box > Infrastructure Services > Syslog Streaming**.

- 2. In the left menu, select Logstream Destinations.
- 3. Click **Lock**.
- 4. In the **Destinations** table, click + to add a new filter. The **Destinations** window opens.
- 5. Enter a **Name**.
- 6. Click **OK**.
- 7. From the Logstream Destination list, select AWS CloudWatch.
- 8. In the AWS CloudWatch section, enter the name of the AWS CloudWatch log Group Name.
- 9. (optional) Select the Stream Name from the drop-down list, or select Other and enter the stream name. The stream

name must be unique in the AWS CloudWatch group.

Destination Address	
Logstream Destination	AWS CloudWatch
Destination IP Address	
Destination Port	
AWS CloudWatch	
Group Name	DOCNGFLOGS
Stream Name	<instance id=""></instance>
l	

- 10. Click **OK**.
- 11. Click Send Changes and Activate.

Step 4. Configure the Logdata Streams to AWS CloudWatch

Combine the logdata filters and logstream destination to a logdata stream.

1. Go to CONFIGURATION > Full Configuration > Box > Infrastructure Services > Syslog Streaming.

- 2. In the left menu, select Logdata Streams.
- 3. Click **Lock**.
- 4. In the **Streams** table, click + to add a new syslog stream. The **Streams** window opens.
- 5. Enter a **Name**.
- 6. Click **OK**.
- 7. Set Active Stream to yes.

- 8. In the **Log Destinations** table, click + and select the logstream destination configured in step 3.
- 9. In the Log Filters table, click + and select the logdata filter configured in step 2.

Stream Configuration		
Active Stream	yes 🗸	•
Log Destinations	₽ ×	•
	AWS1	
Log Filters	• ×	∎•
	ExampleFilter	

10. Click **OK**.

11. Click Send Changes and Activate.

All logs covered by the logdata filter are now streamed to AWS CloudWatch. It might take up to 30 minutes for logs to be displayed in the console.

CloudWatch	CloudWatch > Log Groups > DOCINGFLOGS > i-044625bdda88277fa
Dashboards	
Alarms	Expand all 🔹 Row 🔿 Text 😂 👁
INSUFFICIENT 8	all 30s 5m 1h 6h 1d 1w custom
ок	
•	Time (UTC +00:00) Message
Billing	2017-01-12
vents	14:12:19 2017-01-11T18:06:04+00:00 127:0.0.1 srv S1 VPN(-)[user]:info - TCP start 137.116.71.170:58112: org=3 137.116.71.170:58112 -> 127.0.0.9:443
Rules	14:12:20 2017-01-11T18:06.04+00:00 127:0.0.1 srv S1 VPN-(-) luserl info - TCP Accept on 127:0.0.9.443 from 137.116.71.170:58112 stot 262 timeout 20
.oas	14:12:20 2017-01-11T18:06:07+00:00 127:0.0.1 srv S1 VPN(-) [user] warning - TCP 137.116.71.170:58112: read failed(iOStreamSock: Receive() peer closed connect
	14:12:20 2017-01-11T18:06:07+00:00 127:0.0.1 srv S1 VPN(-) [user] notice - Session TCP slot number 262 terminated -> abort associated session
Aetrics NEW	15:09:07 2017-01-12T03:42:54+00:00 127:0.0.1 srv S1 VPN(-) [user] info - TCP start 137:256.113.7:55646: org=3 137:226.113.7:55646 -> 127:0.0.9:443
	15:09:07 2017-01-12T03:42:54+00:00 127:0.0.1 srv_S1_VPN(-):[user]:info - TCP Accept on 127:0.0.9:443 from 137:226 113.7:55646 slot 1290 timeout 20
	15:09:10 2017-01-12T03:43:16+00:00 127:0.0.1 srv_S1_VPN(-):[user]:alert - TCP 137:226.113.7:55646: handshake timed out (20 secs). closing connection
	15:09:10 2017-01-12T03:43:16+00:00 127.0.0.1 srv_S1_VPN(-):[user]:notice - Session TCP slot number 1290 terminated -> abort associated session
	15:13:44 2017-01-12T04:29:48+00:00 127:0.0.1 srv_S1_VPN(-):[user]:info - TCP start 104:131:159.169:46302: org=3 104:131:159.169:46302 -> 127:0.0.9:443
	15:13:45 2017-01-12T04:29:48+00:00 127:0.0.1 srv_S1_VPN(-):[user]:info - TCP Accept on 127:0.0.9:443 from 104.131.159.169:46302 slot 2833 timeout 20
	 15:13:47 2017-01-12T04:30:10+00:00 127:0.0.1 srv_S1_VPN(-):[user]:alert - TCP 104.131.159.169:46302: handshake timed out (20 secs), closing connection
	15:13:47 2017-01-12T04:30:10+00:00 127:0.0.1 srv_S1_VPN(-):[user]:notice - Session TCP slot number 2833 terminated -> abort associated session
	15:31:23 2017-01-12T07:29:07+00:00 127:0.0.1 srv_S1_VPN(-):[user]:info - TCP start 5:45:64:228:4246: org=3 5:45:64:228:4246 -> 127:0.0.9:443
	 15:31:23 2017-01-12T07:29:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:info - TCP Accept on 127.0.0.9:443 from 5.45.64.228:4246 slot 391 timeout 20
	 15:31:23 2017-01-12T07:29:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:err - TCP 5.45.64.228:4246: peek failed (Connection reset by peer). closing connection(fd=12)
	 15:31:23 2017-01-12T07:29:07+00:00 127:0.0.1 srv_S1_VPN(-):[user]:notice - Session TCP slot number 391 terminated -> abort associated session
	15:34:35 2017-01-12T08:01:40+00:00 127:0.0.1 srv_S1_VPN(-):[user]:info - TCP start 176.126.252.12:44801: org=3 176.126.252.12:44801 -> 127:0.0.9:443
	 15:34:36 2017-01-12T08:01:40+00:00 127:0.0.1 srv_S1_VPN(-)[user] info - TCP Accept on 127:0.0.9:443 from 176:126:252.12:44801 slot 1314 timeout 20
	15:34:36 2017-01-12T08:01:42+00:00 127.0.0.1 srv_S1_VPN(-):[user] info - TCP start 85:248.227.164:40263: org=3 85:248.227.164:40263 -> 127.0.0.9:443
	 15:34:36 2017-01-12T08:01:42+00:00 127:0.0.1 srv_S1_VPN(-)[user] info - TCP Accept on 127:0.0.9:443 from 85:248:227.164:40263 slot 2046 timeout 20
	 15:34:36 2017-01-12T08:01:43+00:00 127.0.0.1 srv_S1_VPN(-):[user] warning - TCP 176.126.252.12:44801: read failed(IOStreamSock: Receive() peer closed connect
	15.34.36 2017-01-12T08.0143+00.00 127.0.0.1 srv_S1_VPN-)[user] notice - Session TCP slot number 1314 terminated -> abort associated session 15.34.36 2017-01-12T08.0144+00.00 127.0.0 srv_S1_VPN-)[user] notice - Session TCP slot number 1314 terminated -> abort associated session

3.3 How to Restore a Configuration on a PAYG Firewall in the Public Cloud

PAYG licenses are generated only once during the first boot. To avoid the PAYG license to be overwritten save the license

before restoring the firewall configuration from a PAR file. Then import the license before activating the configuration.

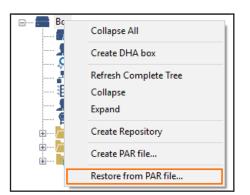
3.3.1 Before You Begin

You must have a working PAR file of the previous configuration. For information on how to back up and restore

configurations, see Backups and Recovery.

Step 1. Save the PAYG Firewall License

1. Go to **CONFIGURATION > Configuration Tree > Box > Box Licenses**.


- 2. Click Lock.
- 3. Click on the PAYG license in the Licenses list.
- 4. Click the export icon, and select Export to File.

License Configuration		/ + ×	۵	
	License	Parameters	Com	Export to Clipboard
	926920-bn-gcld	mod=base-bngcld16payg id=UUID-i-0.		Export to File
	<		>]

5. Enter a name for the license, and save the .lic file.

Step 2. Restore the Configuration from the PAR File

- 1. Go to CONFIGURATION > Configuration Tree.
- 2. Right-click Box and select Restore from PAR file.

3. Click **OK**.

4. Select the PAR file with the previously configured settings, and click **Open**.

Do not click **Activate**.

Step 3. Restore the License

Remove the license from the box license configuration, and replace it with the PAYG license saved in Step 1.

- 1. Go to **CONFIGURATION > Configuration Tree > Box > Box Licenses**.
- 2. Click **Lock**.
- 3. Click the PAYG license in the **Licenses** list.
- 4. Delete the license.
- 5. Click the + icon, and select Import from Files.

License Configuration					Licenses	m filos
Licenses			0	🗙 👝 🔔 📴		rn nies rs are
	License	Parameters		Import from Clip		age
				Import from File	S	
				Import from zip	ped Archive	
						_
	<			>		

- 6. Select the license file created in Step 1.
- 7. Click Open.
- 8. Click Send Changes and Activate.

Step 4. Activate the Network Configuration

- 1. Go to **CONTROL > Box**.
- 2. In the left menu, expand Network and click Activate new network configuration.
- 3. Click Activate now. The Activation Succeeded message is displayed after the network configuration has been

activated.

Network Activation	×					
Activate the network configuration and attempt to reconnect to a new Management IP address via NextGen Admin.						
Active sessions may time out during network activation.						
Activate now Cancel						

3.4 How to Add AWS Elastic Network Interfaces to a Firewall Instance

To make traffic between subnets visible in the firewall, you must add one network interface per subnet. The number of network interfaces you can add to your instance is limited by the instance type. Firewall instances with multiple network interfaces cannot be deployed in a high availability configuration.

3.4.1 AWS Reference Architectures

This article is used in the following AWS reference architectures:

2.5 Segmentation Firewall for Single AZ VPCs(page 71)

3.4.2 Before You Begin

Deploy a firewall instance in the public subnet of the VPC. For more information, see

3.11 How to Deploy an F-Series Firewall in AWS via Web Portal(page 143)

Verify that the Elastic IP address is associated with the elastic network interface (ENI) of the firewall instance and not with the

instance itself.

Stop the firewall instance. Additional network interfaces cannot be attached to a running system.

Step 1. Add an Elastic Network Interface

Create an elastic network interface. This interface will then be attached to the instance later.

- 1. Log into the AWS console.
- 2. Click **Services** and select **EC2**.
- 3. In the Network & Services section of the left menu, click Network Interfaces.
- 4. Click Create Network Interface. The Create Network Interface popover opens.

Create Network Interface	Attach	Detach	Delete	Actions V
Q Filter by tags and attributes	or search b	y keyword		
Name - Netwo	rk interfa-	Subnet ID	- VP	C ID 👻

- 5. Configure the network interface:
 - **Description** Enter a description for the network interface.
 - Subnet Select the private subnet in the VPC for the network interface. The subnet must be in the same Availability

Zone as the firewall instance.

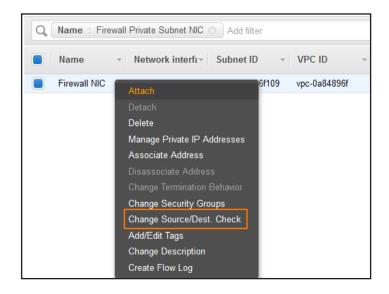
• Private IP – Enter a free IP address in the subnet. The first three IP addresses in the subnet are reserved by AWS.

• Security groups – Select the security group assigned to the firewall instance.

Description	(j)	Additional Firewall Network Interface Private Subnet 1	
Subnet	i	subnet-6d06f109 (10.100.1.0/24) eu-west-1c DOC- Private Subnet ~	
Private IP	(j)	10.100.1.6	
Security groups	(j)	sg-b8fffadc - DOC-NGF-Public Subnet Security Group - This securit ^ sg-48a8482e - NGF-ELB-SG - Security group for the firewall elastic sg-23f0f547 - default - default VPC security group sg-0ce8d36b - launch-wizard-14 - launch-wizard-14 created 2016-0? ✓	

6. Click Yes, Create.

The elastic network interface is now listed with the **Status** column showing **Available**.


Q	Name : Firewall	Private Subnet NIC	3 Add filter						0	< < 1 to 1 o	f1 > >
	Name ~	Network interfe-	Subnet ID 🗸	VPC ID	*	Zone -	Security groups -	Description -	Inst ·	- Status	Public IP
	Firewall NIC	eni-43bf6739	subnet-6d06f109	vpc-0a84896f		eu-west-1c	DOC-NGF-Public S	Additional Fire		🔵 available	

Step 2. Disable Source/Destination Check

To be able to perform NAT operations, the source/destination check must be disabled.

- 1. Log into the AWS console.
- 2. Click Services and select EC2.
- 3. In the Network & Services section of the left menu, click Network Interfaces.
- 4. Right-click on the network interface created in step 1 and click Change Source/Dest. Check. The Change Source/Dest.

Check popover opens.

- 5. Select Disabled.
- 6. Click Save.

The network interface is now able to handle traffic with destination IP addresses that do not match its own private IP address.

Step 3. Attach the Network Instance to the Firewall Instance

Verify that the firewall instance is shut down, and then add the network interface to the instance.

- 1. Log into the AWS console.
- 2. Click Services and select EC2.
- 3. In the Network & Services section of the left menu, click Network Interfaces.
- 4. Right-click on the network interface created in step 1 and click Attach. The Attach Network Interface popover opens.

- 5. In the **Instance ID** list, select the firewall instance.
- 6. Click Attach.

Attach Networ	k Interface	×
Network Interface: Instance ID:	eni-43bf6739 I-b47fdc3f - DOC-SegmentationNGF (stopped) ~	
	Cancel Attach	

Step 4. Start the Firewall Instance

- 1. Log into the AWS console.
- 2. Click **Services** and select **EC2**.
- 3. In the Instances section of the left menu, click Instances.
- 4. Right-click the firewall instance, select Instance State, and click Start. Wait for the firewall instance to start.
- 5. Log into the firewall.
- 6. Go to **CONTROL > Networking**.
- 7. Verify that the network interface you attached in step 4 is listed.

DASHBOARD	CONFIGURATION	CONTR	DL	FIREWALL	VPN	LOGS	STATISTICS	EVENTS
Server	Network	Resour	ces	😭 Licen	ses	Box	Sessions	
Interfaces/IPs	IPs Interfaces Pro	xy ARPs ARPs	Statis	tics OSPF	RIP I	BGP Switch Ir	nfo IPv6 ND Cache	AWS Routes
Interface/IP		Label	Ping	MAC of duplic	ate IP		Info	
📄 🛶 👗 dha	æ							
	.100.0.153/24		ok	-				
O 📩 eth1	1							
🗄 💋 lo								

Step 5. Add the Network Interface in the Firewall Configuration

The network interface must be added and configured in the firewall configuration.

Step 5.1 Add the Network Interface

- 1. Log into the firewall.
- 2. Go to **CONFIGURATION > Configuration Tree > Box > Network**.
- 3. Click Lock.
- 4. In the left menu, click **Interfaces**.
- 5. In the Network Interface Cards table, double-click the 10dynmod entry. The Network Interface Cards: 10dynmod

window opens.

Network Interface Configuration						
Appliance Model	NG Firewall VFC1	6PAYG			\sim	ī.
Appliance Sub Model Type					\sim	∎•
Network Interface Cards			0	🗙 at/	1	۰.
	Name	NIC Type		Driver Mod	ule Name	
	10dynmod	Ethemet		Automatica	lly detected	
	<				>	

- 6. From the Number of Interfaces, select the number of network interfaces attached to the firewall instance.
- 7. Click OK.

Network Interface Configu	ration	
NIC Type	Ethemet	✓ □•
Driver Module Name	Automatically detected virtual NIC	✓ Other ∎•
Number of Interfaces	2	✓ Other ≣•
Activate Driver	yes	✓ ■•
Ethemet MTU	1500	.

8. Click Send Changes and Activate.

Step 5.2 Add a Direct Attached Route for the Network Interface

Add the subnet the network interface is in as a direct attached route.

- 1. Go to **CONFIGURATION > Configuration Tree > Box > Network**.
- 2. Click Lock.
- 3. In the left menu, click **Routing**.
- 4. Click + in the IPv4 Routing Table to add an attached route.
 - Target Network Address Enter the network of the subnet in CIDR format.
 - Route Type Select direct attached network.
 - Interface Name Select the interface used to connect to the network. e..g, eth1
 - Trust Level Select Trusted.

Route Configuration	
Target Network Address	10.100.1.0/24
Route Type	directly attached network
Interface Name	eth1 Other 🗐 -
Gateway	I +
Route Metric	
Source Address	
Trust Level	Trusted (added to Trusted-LAN for Firewall)
Default Gateway	
Route Origin	User created
Active	yes 🗸 🗐

- 5. Click OK.
- 6. Click Send Changes and Activate.

Step 5.3 Activate the Network Configuration

- 1. Go to **CONTROL > Box**.
- 2. In the Network section of the left menu, click Activate new network configuration. The Network Activation window

opens.

3. Click Failsafe.

The route is now pending in **CONTROL > Network.**

Table /	/ Src Filter	State	Туре	Interface	Src IP	Pref	Gateway	Name	
	Table vpnlocal, From all								
÷	Table dhcp1, From 10.100.0).153							
.	Table main, From all								
-	. 📀 10.100.0.0/24	up	direct-k	dhcp	10.100.0.153	0	-		
-	· 🕗 10.100.0.1/32	up	direct-b	dhcp	10.100.0.153	0	-		
-	. 127.0.0.0/24	up	direct-b	lo	127.0.0.2	0	-	boxnet	
-	10.100.1.0/24	off	direct	eth1	-	0	-	IPV401	
i	Table default, From all								
	. 📀 0.0.0.0/0	up	gateway	dhcp	10.100.0.153	100	10.100.0.1		

Step 5.4 Add a Virtual Server IP

Add the private IP address assigned to the network interface as a virtual server IP address.

- 1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Server Properties.
- 2. Click **Lock**.
- 3. Click + in the Additional IP table. The Additional IP window opens.
- 4. Configure the additional virtual server IP:
 - Additional IP Enter the private IP address configured for the network interface in step 1.
 - Reply to Ping Select yes.

Additional IP	10.100.1.6	Ē٠
Label		•
Reply to Ping	yes 🗸	•
Description		∎•

5. Click OK.

6. Click Send Changes and Activate.

The route is now active and the virtual server IP reachable for all clients in the subnet.

Table /	Src Filter	State	Туре	Interface	Src IP	Pref	Gateway	Name	
	Table vpnlocal, From all								
÷	Table dhcp1, From 10.10	0.0.153							
	Table main, From all								
	10.100.0.0/24	up	direct-k	dhop	10.100.0.153	0	-		
	10.100.0.1/32	up	direct-b	dhcp	10.100.0.153	0	-		
	127.0.0.0/24	up	direct-b	lo	127.0.0.2	0	-	boxnet	
	0.100.1.0/24	up	direct-b	eth1	10.100.1.6	0	-	IPV401	
_	Table default, From all								
	0.0.0/0	up	gateway	dhcp	10.100.0.153	100	10.100.0.1		

3.4.3 Next Steps

• Configure the AWS route table to use the network interface as the default route for all clients in this subnet.

To send traffic between two subnets over the firewall, the firewall must have a network interface in each subnet. A gateway

route must be added on the clients with the private IP address of the firewall used as the gateway. For more information, see

3.5 How to Configure AWS Route Tables for Firewalls with Multiple Network Interfaces

For instances in a private subnet to send traffic through the network interface of the firewall in this subnet, you must create an AWS route table for each private subnet. Add a default route using the elastic network interface as the target device. Traffic leaving the VPC is now sent via the network interface of the firewall in the same subnet. However, internal VPC traffic is not sent through the firewall. For more information, see 2.5 Segmentation Firewall for Single AZ VPCs(page 71)

3.5.1 AWS Reference Architectures

This article is used in the following AWS reference architectures:

2.5 Segmentation Firewall for Single AZ VPCs(page 71)

3.5.2 Before You Begin

- Deploy a firewall instance in the public subnet of the VPC.
- The public and private subnets must be in the same Availability Zone.

Add a network interface in the private subnet to the firewall instance. For more information, see

3.4 How to Add AWS Elastic Network Interfaces to a Firewall Instance(page 95)

Step 1. Create an AWS Route Table

Create an AWS route table for each private subnet.

- 1. Log into the AWS console.
- 2. Click Services and select VPC.
- 3. In the Virtual Private Cloud section of the left menu, click Route Tables.
- 4. Click Create Route Table. The Create Route Table popover opens.

Create Route Table	Delete Route Table	Set As Main Table		
QSearch Route Table	es and their 🗙			
Name	Route Table ID	- Explicitly Associat-	Main	+

- 5. Configure the route table:
 - Name tag Enter the name for the route table.
 - VPC Select the VPC from the list.

С	reate Route Tabl	e	×
	route table specifies how p nd your VPN connection. Name tag VPC	ackets are forwarded between the subnets within your VPC, the Internet, PrivateSubnet1RouteTable Vpc-0a84896f (10.100.0.0/16) DOC-VPC	
		Cancel Yes, Create	

6. Click Yes, Create.

Step 2. Associate the Private Subnet with the Route Table

If the subnet is not explicitly associated with a route table, the main route table for the VPC is used.

- 1. Log into the AWS console.
- 2. Click Services and select VPC.
- 3. In the Virtual Private Cloud section of the left menu, click Route Tables.
- 4. Select the route table created in step 1.
- 5. In the lower half of the screen, click on the **Subnet Associations** tab.

Name	Route Table	e ID 👻 Explicitly Asso	ociat• Main • VPC	-					
PrivateSubnet	1RouteTat rtb-e05f7b84	0 Subnets	No vpc-0	0a84896f (10.100.0.0/16) DOC-VPC					
rtb-e05f7b84 PrivateSubnet1RouteTable									
Summary	Routes	ubnet Associations	Route Propagation	Tags					

6. Click Edit.

- 7. Select the subnet you want to associate with this route table.
- 8. Click Save.

rtb-e05f7b84 PrivateSubnet1RouteTable										
Summa	iry	Routes	Subnet Associations	Route Propaga	ation	Tags				
Cancel	Save									
Associate	Subnet			CIDR	CIDR Current Route Table					
	subnet-6e	e06f10a (10.100.	0.0/24) DOC Public Subnet #1	10.100.0.0/24	rtb-9da95	9f9 Public Route Table				
	subnet-60	106f109 (10.100.	1.0/24) DOC- Private Subnet #	1 10.100.1.0/24	rtb-9ca95	9f8 Private Route Table #1				
	subnet-83	34d3fe7 (10.100.)	2.0/24) DOC Private Subnet #2	2 10.100.2.0/24	rtb-23613	a47 Private Route Table #2				

The private subnet is now associated with the route table.

rtb-e05f7b84 PrivateSubnet1RouteTable										
Summary	Routes	Subnet Asso	ciations	Route Pro	pagation	Tags				
Edit										
Subnet			CIDR							
subnet-6d06f109 (10.	100.1.0/24) DOC-	Private Subnet #1	10.100.1.0	24						
The following subnets have not been explicitly associated with any route tables and are therefore associated with the main route table:										
Subnet			CIDR							
All your s	ubnets are associat	ted with a route tab	ole.							

Step 3. Add a Default Route with the Network Interface of the Firewall as the Target

Locate the elastic network interface identifier (eni-12345678) for the network interface in this subnet. Click on the network

interface in the **Description** tab of the firewall instance to retrieve the ID.

Name	v	Instance ID	 Instar 	псе Туре 👻	Availability Zone	 Instance State +
DOC-Segn	nentationNGF	i-b47fdc3f	t2.me	dium	eu-west-1c	stopped
DOC-PrivS	ubnet-3	4746+947	10 000		ou woot to	alapaad
nstance: i-b4	7fdc3f (DOC-Seg	m Network Int	erface eth1			
Description	Status Checks		Interface ID VPC ID	eni-43bf6739 vpc-0a84896		
	Instance ID		hment Owner hment Status	7262565857 attached		
	Instance state		ichment Time		13:54:56 GMT+200 2	
	Instance type	Delete	on Terminate	false		
	Private DNS	Priva	e IP Address	10,100,1.6		
	Private IPs	Priva	e DNS Name	ip-10-100-1-6	i.eu-west-1.compute	.internal
		Elast	ic IP Address			
Se	condary private IPs	Source	Dest. Check			
	VPC ID		Description	Additional Fi	rewall Network Interf	ace Private
				Subnet 1		
	Subnet ID	Se			ublic Subnet Securit	y Group
	Network interfaces	eth1				
	Source/dest_check	False				Key pair nar

- 1. Log into the AWS console.
- 2. Click Services and select VPC.
- 3. In the Virtual Private Cloud section of the left menu, click Route Tables.
- 4. Select the route table created in step 1.
- 5. In the lower half of the screen, click on the **Routes** tab.

6. Click **Edit**.

rtb-e05f7b84 PrivateSubnet1RouteTable										
Summary Route		Routes		Subnet Associatio		R	oute Propagation		Tags	
Edit	Edit									
Destination	Target	Status	Pr	opagated						
10.100.0.0/16	local	Active	No		-					

7. Click Add another route.

- 8. Configure the route:
 - **Destination** Enter 0.0.0/0.
 - Target Enter the ID for the firewall network interface located in this subnet.

rtb-e05f7b84 PrivateSubnet1RouteTable								
Summary	Routes	Subnet Associat	ions	Route Propaga	tion	Tag		
Cancel Save								
Destination	Target		Status	Propagated	Remove			
10.100.0.0/16	local		Active	No				
0.0.0/0	eni-43bf6	739		No	0			
Add another route								

All traffic leaving the VPC from the associated subnet is now sent through the firewall. The status of the route must be **Active**.

rtb-e05f7b84 PrivateSubnet1RouteTable										
Summary	Routes	Subnet	Associations	Route Propagation	Tags					
Edit										
Destination	Target	Status	Propagated							
10.100.0.0/16	local	Active	No							
0.0.0/0	eni-43bf6739 / i-b47fdc3f	Active	No							

```
Shared parameters
        "CCIPAddress": {
            "Description": "IP Address or hostname of the Control
Center",
            "Type": "String",
            "Default": "127.0.0.1"
        },
        "Cluster": {
            "Description": "Case sensitive Control Center cluster name",
            "Type": "String"
        },
        "Range": {
            "Description": "Control Center range number",
            "Type": "String"
        },
        "FirewallName": {
            "Description": "Case sensitive name of the Firewall on the
Control Center",
            "Type": "String"
        }
Additional required parameters for Control Center authentication:
        "CCUser": {
            "Description": "CC admin username",
            "Type": "String",
            "Default": ""
        },
        "CCPassword": {
            "Description": "CC admin user password",
            "Type": "String",
            "Default": "",
            "NoEcho": "true"
        },
Additional required parameters for shared key authentication:
         "CCSharedKey": {
            "Description": "shared key to retrieve PAR file",
            "Type": "String",
            "Default": "",
            "NoEcho": "true"
        },
```

3.6 How to Modify CloudFormation Templates to Retrieve the PAR File from a Control Center

If you are using the NextGen Control Center, you can modify your firewall's AWS CloudFormation template to retrieve the PAR file for the new F-Series Firewall Instance from the Control Center. The script authenticates either with CC admin credentials or a shared secret. Licenses that are already installed on PAYG firewall Instances are pushed to the Control Center before retrieving the PAR file. Firewalls using the BYOL images use the licenses configured on the Control Center.

'getpar' Command Line Parameters Usage

- -a|--address <address> Control Center IP address.
- -u|--username <username> CC admin user used to connect to the Control Center
- -c|--cluster <cluster> Cluster name
- -r|--range <range> Range number
- -b|--boxname <boxname> Firewall name.
- -d|--destination <dest> Destination directory and filename for the par file. e.g., /opt/phion/update/box.par
- -s|-spoe Use Single Point of Entry to connect to the Control Center.
- -I|--pushlic auto|always|never Configures if the licenses should be pushed to the Control Center before retrieving the PAR file.

3.6.1 Before You Begin

• Create an AWS CloudFormation template to deploy your F-Series Firewall.

Step 1. Create the Firewall Configuration in the Control Center

Create the F-Series Firewall configuration in the Control Center.

For more information, see How to Add a new F-Series Firewall to the Control Center.

Step 2. Configure Authentication

The newly deployed firewall can authenticate either through a CC Admin account or with a shared key. The shared key is defined on a per-firewall level.

CC Admin Authentication

Create a CC admin and assign it an Administrative role with the following permissions:

• CC Configuration Permission – Click the Get PAR File check box.

For more information, see Control Center Admins and How to Configure Administrative Roles.

Shared Key Authentication

- 1. Log in to the Control Center.
- 2. Go to your firewall > **Box Properties**.
- 3. In the left menu, click **Operational**.
- 4. In the left menu, expand **Configuration Mode** and click **Switch to Advanced View**.
- 5. Click Lock.
- 6. Enter the PAR File Retrieval Shared Key.
- 7. Click Send Changes and Activate.

Step 3. Add the Parameters to the Template

You must add the parameters you need to the Parameters section of the template.

- 1. Add the following mandatory parameters to the **parameter** section of the template:
 - CCIPAddress The IP address of your Control Center if it is directly reachable, or the IP address of the border firewall

forwarding the traffic to the Control Center.

• Range – The range number.

Cluster – The cluster name.

- FirewallName The name of the Firewall.
- Add the authentication parameters:
 - For Control Center Admins:
 - **CCUser** The CC admin.
 - **CCPassword** The password for the CC admin.
 - For Shared Key Authentication:
 - CCSharedKey The shared key used to authenticate to the Control Center.

Step 4. Modify the Template to Retrieve the PAR File

Add a script to the userData element of the template. Use the parameters defined above.

1. Locate the **Gateway** section.

Add the getparfile script to the **UserData** parameter with the desired authentication method:

```
Control Center Admin:
     "Gateway": {
       "Type": "AWS::EC2::Instance",
       "Properties": {
         "Imageld": "ami-XXXXXXXX",
         "InstanceType": { "Ref": "InstanceType" },
         "KeyName": { "Ref": "KeyName" },
         "SecurityGroups": [{"Ref": "NGSecurityGroup"}],
         "UserData": {
           "Fn::Base64": {
              "Fn::Join": [
                "", [
                  "#!/bin/bash\n\n",
                  "echo \"userdata\" >> /tmp/userdata.txt\n",
                  "/opt/aws/bin/cfn-init -v --region",
                  {"Ref": "AWS::Region" },
                  "-S",
                  {"Ref": "AWS::StackName" },
                  " -r ",
                  "Gateway\n",
                  "/opt/aws/bin/cfn-hup-config -r",
                  {"Ref": "AWS::Region" },
                  "-S",
                  {"Ref": "AWS::StackName" },
                  "\n"
                1
              ]
           }
         }
      },
      "Metadata": {
         "AWS::CloudFormation::Init": {
           "configSets": {
              "default": ["getparfile"]
           },
           "getparfile": {
              "files": {
                "/etc/cfn/hooks.d/test.conf": {
                  "content": { "Fn::Join": [ "", [
                     "[testhook]\n",
                     "triggers=post.add\n",
                     "path=Resources.Gateway\n",
                     "action=\"echo blabla > /tmp/hook.log\"\n",
                     "runas=root"
                  ]]},
                  "mode": "000644",
                  "owner": "root",
                  "group": "root"
                }
              },
              "commands": {
                "retrievepar": {
                  "command": {
                     "Fn::Join": ["", [
                       "echo \"",
                       {"Ref": "CCPassword" },
                       "\" | /opt/phion/bin/getpar -a ",
                       {"Ref": "CCIPAddress" },
                       "-u",
                       {"Ref": "CCUser" },
                       " - C ",
```

108 How to Modify CloudFormation Templates to Retrieve the PAR File from a Control Center

```
Barracuda Campus
```

} } Shared key authentication: "Gateway": { "Type": "AWS::EC2::Instance", "Properties": { "Imageld": "ami-XXXXXXXX", "InstanceType": { "Ref": "InstanceType" }, "KeyName": { "Ref": "KeyName" }, "SecurityGroups": [{ "Ref": "NGSecurityGroup" }], "UserData": { "Fn::Base64": { "Fn::Join": ["", ["#!/bin/bash\n\n", "echo \"userdata\" >> /tmp/userdata.txt\n", "/opt/aws/bin/cfn-init -v --region", {"Ref": "AWS::Region" }, "-s", {"Ref": "AWS::StackName" }, "-r", "Gateway\n", "/opt/aws/bin/cfn-hup-config -r", {"Ref": "AWS::Region"}, "-S", {"Ref": "AWS::StackName" }, "\n" 1 1 } } }, "Metadata": { "AWS::CloudFormation::Init": { "configSets": { "default": ["getparfile"] }, "getparfile": { "files": { "/etc/cfn/hooks.d/test.conf": { "content": { "Fn::Join": ["", ["[testhook]\n",

"triggers=post.add\n", "path=Resources.Gateway\n",

```
"action=\"echo blabla > /tmp/hook.log\"\n",
                "runas=root"
              ]]},
              "mode": "000644",
              "owner": "root",
              "group": "root"
           }
         },
         "commands": {
           "retrievepar": {
              "command": {
                "Fn::Join": ["", [
                  "echo \"",
                  {"Ref": "CCSharedKey" },
                   "\" | /opt/phion/bin/getpar -a ",
                  {"Ref": "CCIPAddress" },
                  "-C",
                   {"Ref": "Cluster"},
                   " -r ",
                  {"Ref": "Range" },
                  "-b",
                  {"Ref": "FirewallName" },
                   "-d /opt/phion/update/box.par -s",
                  "--verbosity 10",
                  ">>/tmp/getpar.log"
                ]]
              }
           }
         }
      }
    }
  }
}
```

```
2. Save the template.
```

Step 5. (optional) Allow Access to the Control Center

If the firewall VM cannot directly reach the Control Center, you must create a dynamic access rule on the border firewall. Using

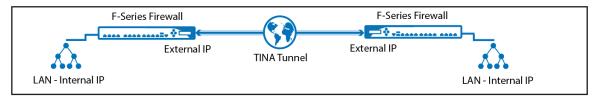
dynamic rules allows you to enable access only when deploying a new firewall. If SPoE is used, you must open port TCP 806.

- Action Select Dst NAT.
- Source If known, enter the public IP address of the Firewall, or select Internet.
- Service Create and select a service object for TCP 806. For more information, see Service Objects.
- Destination Enter the Point of Entry IP address of the border firewall.
- Redirect to Enter the IP address of the Control Center.
- Connection Method Select Original Source IP.

	Retrie	vePARFile-to-ControlCenter	r		
Dst NAT					
🛹 🔲 Bi-Directional		💍 🗹 Dynamic Rule		🕘 🗌 Deactivate Rule	
Source		Service		Destination	
Internet	~	CC-MGMT-SPoE	~	DHCP1 Local IP	~
Ref: Any		TCP 806			
NOT 10.0.0/8					
NOT 172.16.0.0/12					
NOT 192.168.0.0/16				Redirection	
				Target List	Reference 📃
				10.8.10.10	
				Fallback	~
				List of Critical Ports	
				806	
Authenticated User		Policies		Connection Method	
Any	~	IPS Policy		Original Source IP	~
		Default	•	Original Source IP (sam	e port)
		Application Policy		Chiginal Source In (Sam	ic porty
		No AppControl			
		Schedule			
		Always	•		
		QoS Band (Fwd)			
		VOIP (ID 2)	•		
		QoS Band (Reply)			
		Like-Fwd	-		

3.6.2 Next Steps

Deploy the firewall via the AWS CloudFormation template.


For more information, see 3.10 How to Deploy an F-Series Firewall in AWS via CloudFormation Template(page 139)

3.7 How to Create a TINA VPN Tunnel between F-Series Firewalls

As the TINA protocol offers significant advantages over IPsec, it is the main protocol that is used for VPN connections between

F-Series Firewalls. Many of the advanced VPN features, such as Traffic Intelligence or WAN Optimization, are only supported for

TINA site-to-site tunnels.

You must complete this configuration on both the local and the remote Barracuda NextGen Firewall F-Series by using the

respective	values	helow.
respective	varacs	DC1011.

Example values for the local firewall	Example values for the remote firewall	
VPN local networks	10.0.10.0/25	10.0.81.0/24
VPN remote networks	10.0.81.0/24	10.0.10.0/25
External IP address (listener VPN service)	62.99.0.40	212.86.0.10

The following sections use the default transport, encryption, and authentication settings. For more detailed information, see

TINA Tunnel Settings.

Step 1. Configure the VPN Service Listeners

Configure the IPv4 and IPv6 listener addresses for the VPN service.

1. Go to CONFIGURATION > Configuration Tree> Box > Virtual Server > your virtual server > Assigned Services >

VPN > Service Properties.

- 2. Click **Lock**.
- 3. From the **Service Availability** list, select the source for the IPv4 listeners:
 - First+Second-IP The VPN service listens on the first and second virtual server IPv4 address.
 - First-IP The VPN service listens on the first virtual server IPv4 address.
 - Second-IP The VPN service listens on the second virtual server IPv4 address.
 - Explicit For each IP address, click + and enter the IPv4 addresses in the Explicit Service IPs list.
- 4. Click + to add an entry to the **Explicit IPv6 Service IPs**.
- 5. Select an IPv6 listener from the list of configured explicit IPv6 virtual server IP addresses.

Service IPs	
Service Availability	Explicit 👻 🗎
Explicit Service IPs	👻 😥 🖶 X 🔹 🗣 🔒 🔒
	62.99.0.40
	194.93.0.10
	10.20.0.3
	10.0.10.3
	۰ III ۲
Explicit Service IPv6s	🖶 🗙 🔒
	ip6serv2 (2001:db8:1::10)
	ip6serv3 (2001:db8:1::20)
	ip6serv4 (2001:db8:1::30)

6. Click Send Changes and Activate.

Step 2. Configure the TINA Tunnel at Location 1

For the firewall at location 1, configure the network settings and export the public key. For more information on specific

settings, see TINA Tunnel Settings

- 1. Log into the firewall at location 1.
- 2. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN > Site to Site.

- 3. Click Lock.
- 4. Click the **TINA Tunnels** tab.
- 5. Right-click the table, and select **New TINA tunnel**.
- 6. In the **Name** field, enter the name for the new VPN tunnel.
- 7. (IPv6 only). Select IPv6.

TINA Tu	innel		
Name	Location 1TINAtunnel	Disabled	IPv6

Configure the **Basic** TINA tunnel settings. For more information, see TINA Tunnel Settings.

- Transport Select the transport encapsulation: UDP (recommended), TCP, TCP&UDP, ESP, or Routing.
- Encryption Select the encryption algorithm: AES, AES256, 3DES, CAST, Blowfish, DES, or Null.
- Authentication Select the hashing algorithm: MD5, SHA, SHA256, SHA512, NOHASH, RIPEMD160, or GCM.
- (optional) TI Classification / TI-ID For more information, see Traffic Intelligence.
- (optional) Compression Select yes to enable VPN compression. Do not use in combination with WAN

Optimization.

• (optional) Use Dynamic Mesh / Dynamic Mesh Timeout – For more information, see Dynamic Mesh VPN

Networks.

Basics TI - Band	dwidth Protection TI - VPN Env	elope Policy Advance	ed Scripts			
Transport	UDP 💌	TI Classification	Bulk	-	Use Dynamic Mesh	
Encryption	AES256 💌	TI-ID	0	•	Dynamic Mesh Timeout [s]	600
Authentication	SHA512 💌	Compression	No	•		

In the Local Networks tab, select the Call Direction. At least one of the firewalls must be active.

Configure the NextGen Firewall F-Series with a dynamic IP address to be the active peer. If both firewalls use dynamic IP

addresses, a DynDNS service must be used. For more information, see How to Configure VPN Access via a Dynamic WAN IP

Address.

Local Networks Local Identify	1
Call Direction	Active
Local Network Scheme	-explicit-
Network Address (e.g. 10.6.0.0/16) Add Delete	Addr/Mask

- 8. Click the Local tab, and configure the IP address or Interface used for Tunnel Address:
 - (IPv4 only) First Server IP First IP address of the virtual server the VPN service is running on.
 - (IPv4 only) Second Server IP Second IP address of the virtual server the VPN service is running on.
 - Dynamic (via routing) The firewall uses a routing table lookup to determine the IP address.
 - Explicit List (ordered) Enter one or more explicit IP addresses. Multiple IP addresses are tried in the listed order.
 - In the Remote tab, enter one or more IPv4 or IPv6 addresses or an FQDN as the Remote Peer IP Addresses, and

click **Add**

Local Networks Local Identify	1	Remote Networks Remote Peer Identification
Tunnel Parameter Template	-explicit-	Parameters used for Remote Peer Identification and Connection
IP Address or Interface used	Dynamic (via routing)	Remote Peer Tunnel Name
for Tunnel Address	IP Address/Interface Name	Remote Peer IP Addresses Addr/Mask (e.g. 10.6.1.1 or 212.86.0.10
Add Delete	Direct (no Proxy)	212.86.0.10
Proxy Server IP [:port]		Accepted Ciphers
Proxy User		AES CAST Blowfish 3DES DES Null AES256 Custom
Password		

- 9. In the **Remote** tab, select the **Accepted Ciphers**. To use a cipher, the list must match the **Encryption** settings previously configured.
- 10. For each local network, enter the Network Address in the Local Networks tab and click Add. e.g., 10.0.10.0/25
- 11. For each remote network enter the Network Address in the Remote Networks tab and click Add. e.g., 10.0.81.0/24
- 12. (optional) To propagate the remote VPN network via dynamic routing enable Advertise Route.

all Direction	Active	•		0
ocal Network Scheme	-explicit-	VPN Interface I	ndex	U
etwork Address	Addr/Mask	Remote Networ	k [Addr/Mask
.g. 10.6.0.0/16)	10.0.10.0/25	(e.g. 10.6.0.0/1	6)	10.0.81.0/24 Advertise Route=NO
0.0.10.0/25		10.0.81.0/24		
Add Delete		Advertise Ro	oute	
		Add De	ete	

- 13. Click on the **Identity** tab.
- 14. From the Identification Type list, select Public Key.
- 15. Click **Ex/Import** and select **Export Public Key to Clipboard**.

Local Networks Local	Identify		1
Identification Type	Public Key		•
Server Certificate	-Use-Default-		v
Server Protocol Key	-Explicit-	•	Ex/Import
	Valid (BDUTRV)		Export Public Key to Clipboard
			Export Public Key to File
			Export Private Key to Clipboard
			Export Private Key to File
			Export Private Key to Clipboard (Password protected)
			Export Private Key to File (Password protected)
			Blank Key
			Import Private Key from Clipboard
			Import Private Key from File
			New 512-Bit RSA Key
			New 1024-Bit RSA Key
			New 2048-Bit RSA Key

- 16. Click **OK**.
- 17. Click Send Changes and Activate.

Step 3. Create the TINA Tunnel at Location 2

- 1. Log into the firewall at location 2.
- 2. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned
 - Services > VPN > Site to Site .
- 3. Click **Lock**.
- 4. Click the **TINA Tunnels** tab.
- 5. Right-click the table, and select **New TINA tunnel**.
- 6. In the **Name** field, enter the name for the new VPN tunnel.
- 7. (IPv6 only) Click the **IPv6** check box.

TINA Tu	innel		
Name	Location2TINAtunnel	Disabled	IPv6

8. Configure the **Basic** TINA tunnel settings to match the settings configured for the Location1

In the Local Networks tab, select the Call Direction. Make sure that one or both firewalls are set to active.

Call Direction	Passive	
Local Network Scheme	-explicit-	•
Network Address (e.g. 10.6.0.0/16) Add Delete	Addr/Mask	

- 9. Click the Local tab, and configure the IP address or Interface used for Tunnel Address:
 - (IPv4 only) First Server IP First IP address of the virtual server the VPN service is running on.
 - (IPv4 only) Second Server IP Second IP address of the virtual server the VPN service is running on.
 - Dynamic (via routing) The firewall uses a routing table lookup to determine the IP address.
 - Explicit List (ordered) Enter one or more explicit IP addresses. Multiple IP addresses are tried in the listed order.
- 10. Click the **Remote** tab, enter one or more IP addresses or a FQDN as the **Remote Peer IP Addresses**, and click Add.

Remote Networks Remote	Peer Identification
Parameters used for Remote	Peer Identification and Connection
Remote Peer Tunnel Name	
Remote Peer IP Addresses (e.g. 10.6.1.1 or host.domain.com)	Addr/Mask vpn2.mydomain.com
vpn2.mydomain.com Add Delete	• • • • • • • • • • • • • • • • • • •
Accepted Ciphers	
AES CAST	Blowfish JDES
DES Null	AES256 Custom

- 11. In the **Remote** tab, select the **Accepted Ciphers**. To use a cipher, the list must match the **Encryption** settings previously configured.
- For each local network, enter the Network Address in the Local Networks tab and click Add. e.g., 10.0.81.0/24 behind Location 2 NextGen Firewall F-Series.
- For each remote network, enter the Network Address in the Remote Networks tab and click Add. e.g., 10.0.10.0/25
 behind Location1 NextGen Firewall F-Series.

Call Direction	Passive		
Local Network Scheme	-explicit-	VPN Interface Index	0
Network Address (e.g. 10.6.0.0/16) 10.0.81.0/24 Add Delete	Addr/Mask 10.0.81.0/24	Remote Network (e.g. 10.6.0.0/16) 10.0.10.0/25 Advertise Route	Addr/Mask 10.0.10.0/25 Advertise Route=NO

- 14. Click on the **Peer Identification** tab.
- 15. Click Ex/Import and select Import from Clipboard.

D LIE IZ	entification	Ex/Import 🗸
Public Key	No key set	Ex inport v
CA Root	-Use-All-Known-	Import from Public
X509 Condition		Import from Clipboard
Explicit X509		Import from File

- 16. Click on the **Identity** tab.
- 17. From the Identification Type list, select Public Key.
- 18. Click Ex/Import and select Export Public Key to Clipboard.

- 19. Click **OK**.
- 20. Click Send Changes and Activate.

Step 4. Import the Public Key for Location 1

The VPN tunnel is not activated until the public key of location 2 is imported to location 1.

- 1. Log into the firewall at location 1.
- 2. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN-Service > Site to Site .

- 3. Click **Lock**.
- 4. Open the configuration for the site-to-site tunnel created in Step 1.
- 5. Click the **Peer Identification** tab.
- 6. Click Ex/Import and select Import from Clipboard.

Public Key	No key set	Ex/Import 🗸
CA Root	-Use-All-Known-	Import from Public
X509 Condition		Import from Clipboard
Explicit X509		Import from File
Explicit X509		

7. Click **OK**.

8. Click Send Changes and Activate.

After configuring the TINA VPN tunnel on both firewalls, you must also create an access rule on both systems to allow access

to the remote networks through the VPN tunnel.

3.7.1 Next Step

Create access rules to allow traffic in and out of your VPN tunnel: How to Create Access Rules for Site-to-Site VPN Access.

3.8 How to Create a Geo Location based Network Object

The geolocation database included with the F-Series Firewall can match the IP address and network to the country it was issued to. This enables you to create access rules based on the physical location of the source or destination. Lists of countries or regions are combined in a reusable network object. The geolocation database is updated with every firmware release.

3.8.1 Create a Network Object

Create a network object and include all countries you want to use for your access rule.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > Firewall > Forwarding Rules.

- 2. In the left menu, click on Networks.
- 3. Right click in the main area and select New. The Edit/Create Network Object window will open.

4. Enter a Name.

- 5. To include or exclude a region or country:
 - a. Click the globe icon either in the Include or Exclude Entries section.

Edit/Crea	te Network Object			
Genera	1		Description	
Type	Generic Network Object (IP	, Network, Ranges) 💌		
Name	1	Resolve		
			Network Color	
Include	e Entries	🗕 🕂 🧟 🗡 🥒	Exclude Entries	🕈 💽 🗙 🧷
IP / Re	f / Geo	Comment	IP / Ref / Geo	Comment

b. In the Select Region/Country window, select the region or country.

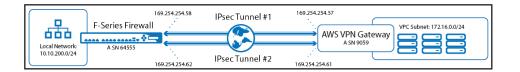
Se	elect Regio	n/Country	×
			Find
	÷	Africa	
	÷	Asia	
	÷	Central America	
	÷	European Union	
	±	Europe	
	÷	Middle East	
	÷	North America	
	÷	Oceania	
	±	South America	
	÷	The Caribbean	
	÷	Other	

c. Click **OK**.

6. Click Send Changes and Activate.

lit/Crea	te Network Object				
Genera	1			Description	
Туре	Generic Network Object (IP	, Network, Ranges)	•		
Name	GeolcationNetworkObject	Reso	olve		
				Network Color	
Includ	e Entries	🕂 🔮 🖈	0	Exclude Entries	🕂 🕂 🥥 🖈 🥖
IP / Re	f / Geo	Comment		IP / Ref / Geo	Comment
A	ustria			om Korea People's Republic	
	nited Kingdom nited States				

You can now select the geolocation network object you just created from the **Source** and **Destination** dropdown lists when creating access rules. Alternatively you can find the network object icon the Object Viewer in the **Networks > Network**


Objects section.

🙀 Edit Rule: NewRule [Rule]			×	Object Viewer		(8
				Applications Ne	etworks Services	Connections ICMP	9
	NewRule					2	
Block -				Name	~	Description	^
				DSL2 Local I	IP		
Arrow Bi-Directional	📌 📃 Dynamic Rule	💥 📄 Deactivate Rule		DSL3 Local I	IP		
Source	Service	Destination		DSL4 Local I	IP		
GeolcationNetworkObject		•	-	Eval Mode B	ridged Ports	0.0.0.0/0 port 1	
		· ·	· ·	GeolcationNe		AT, GB, US, KF	
DMZ Networks		<u>^</u>		Internet		Ref: Any, NOT 1D	
DNS Master Server				Local Networ	rks		
DNS Servers DSL1 Local IP				Anagement 2	: IP		
DSL1 Local IP DSL2 Local IP				👌 NTP Time Se	erver		
DSL2 Local IP				Port-p1		0.0.0/0 port1	
DSL4 Local IP				Port-p2		0.0.0/0 port2	
Eval Mode Bridged Ports				Port-p3		0.0.0/0 port3	
GeolcationNetworkObject		0 dev p1, 0.0.0.0/0 dev p2, 0.0 dom, GEO United States, NOT GE		Port-p4		0.0.0/0 port4	
Internet		OT 172.16.0.0/12, NOT 192.168		Private 10		10.0.0/8	
Local Networks	0.0.0.0/0/ NOT 10.0.0/0/8, N	51 172.16.6.6/12, NOT 192.10c		Private 172		172 16 0 0/12	

3.9 How to Configure an IKEv1 IPsec VPN to an AWS **VPN Gateway with BGP**

If you are using the Amazon Virtual Private Cloud, you can transparently extend your local network to the cloud by connecting both networks with a site-to-site IKEv1 IPsec VPN tunnel. The Amazon virtual private gateway uses two parallel IPsec tunnels IKEv1 to ensure constant connectivity. The subnets behind the VPN Gateway are propagated via BGP. Additional Amazon AWS charges apply. For more information, see Amazon's monthly pricing calculator at

http://calculator.s3.amazonaws.com/calc5.html.

3.9.1 Before You Begin

Create an Amazon Virtual Private Cloud (VPC).

The local and remote (VPC) subnets must not overlap. e..g, if your local network is 10.0.1.0/24, do not use 10.0.0.0/16 for your

VPC.

- Create at least one subnet in the VPC.
- Create and configure the Amazon Routing Table.

Step 1. Create the Amazon VPN Gateway

Step 1.1 Create a Virtual Private Gateway

- 1. The Amazon virtual private gateway is the VPN concentrator on the remote side of the IPsec VPN connection.
- 2. Go to the Amazon VPC Management Console.
- 3. In the left menu, click Virtual Private Gateways.

4. Click Create Virtual Private Gateway.

- 5. Enter the Name tag for the VPN gateway (e.g., Techlib Virtual Private Gateway).
- 6. Click Yes, Create.
- 7. Select the newly created virtual private gateway, and click Attach to VPC.
- 8. Select your VPC from the VPC list, and click Yes, Attach.
- 9. The virtual private gateway is now available.

VPC Dashboard	Create Virtual Private Gateway Delete Virtual Private Gateway Attach to VPC Detach from VPC
VPN Connections	QSearch Virtual Private Gateways X
Customer Gateways	Name ▲ ID ▼ State ▼ VPC ▼
Virtual Private Gateways	Techilb Virtual Private Gateway vgw-eaac9b9e attached ipsec.1 vpc-7ae90b1f (172.16.0.0/16)
VPN Connections	

Step 1.2 . Add Your Customer Gateway Configuration

The Amazon customer gateway is your Barracuda NextGen Firewall F-Series on your end of the VPN connection. Specify your

external IP address and routing type in the customer gateway configuration:

- 1. Go to the Amazon VPC Management Console.
- 2. In the left menu, click **Customer Gateway**.
- 3. Click Create Customer Gateway.
- 4. Enter the connection information for your Barracuda Firewall:
 - Name Tag Enter a name for your device (e.g., My Barracuda NextGen Firewall F-Series).
 - Routing Select Dynamic.
 - IP Address Enter your external IP Address. To look up your external IP address, go to CONTROL > Network.

Create Customer	Gateway	®×
static and can't be behind a also specify your gateway's	P address for your gateway's external ind device performing network address transla Border Gateway Protocol (BGP) Autonomo vate ASN (such as those in the 64512-655	ation (NAT). For dynamic routing ous System Number (ASN); this
Name tag:	My Barrcuda NG Firewall	0
Routing:	Dynamic 🖌 🚺	
BGP ASN:	64555	0
IP Address:	54.229.1.87	0
		Cancel Yes, Create

5. Click Yes, Create.

Your Barracuda NextGen Firewall F-Series is now configured in the AWS cloud and can be used to configure VPN connections.

VPC Dashboard	Create Customer Gateway Delete Customer Gateway	ද ද 🔅 Ø
VPN Connections	QSearch Customer Gateways X	$ \langle$ \langle 1 to 1 of 1 Customer Gateways \rangle $\rangle $
Customer Gateways	Name • ID • State	▲ Type v IP Address v BGP ASN v
Virtual Private Gateways	My Barrcuda NG Firewall cgw-c56751b1 available	ipsec.1 54.229.172.87 64555
VPN Connections		

Step 1.3 . Create a VPN Connection

Create a VPN connection with the customer gateway and the virtual private gateway that you just created. Then download

the VPN configuration file because it contains all the necessary information for configuring the VPN connection on the

Barracuda NextGen Firewall F-Series.

The Amazon VPN configuration file is different for every VPN connection.

- 1. Go to the Amazon VPC Management Console.
- 2. In the left menu, click **VPN Connections**.
- 3. Click Create VPN Connection.
- 4. In the **Create VPN Connection** window, enter the configuration information for your VPN connection:
 - Name tag Enter a name for your VPN connection (e.g., NG2AWSCloud).
 - Virtual Private Gateway Select the virtual private gateway created in Step 1.
 - Routing Options Select Dynamic (requires BGP).

Create VPN Connection	0	×		
Select the Virtual Private Gateway and Customer Gateway that you would like to connect via a V connection. You must have entered the Virtual Private Gateway and your Customer Gateway information already.	/PN			
Name tag NG2AWSCloud ()				
Virtual Private Gateway vgw-eaac9b9e Techilb Virtual Private Gateway 🗸				
Customer Gateway 💿 Existing				
○ New				
cgw-c56751b1 (54.229.1.87) My Barrcuda NG Firewa	II	~		
Specify the routing for the VPN Connection (Help me choose) Routing Options Dynamic (requires BGP) Static VPN connection charges apply once this step is complete. View Rates				
Cancel Yes, Cr	eate	•		

5. Click Yes, Create.

6. Click **Download Configuration**.

- 7. Select generic vendor and platform settings for the configuration file:
 - Vendor Select Generic.
 - Platform Select Generic.
 - Software Select Vendor Agnostic.

Download Configuration			
Please choose the configura	tion to download based on your type of customer gateway.		
	Generic v î Generic v î Vendor Agnostic v î		
	Cancel Yes, Down	load	

Amazon Web Services Virtual Private Cloud VPN Connection Configuration AWS utilizes unique identifiers to manipulate the configuration of a VPN Connection. Each VPN Connection is assigned a VPN Connection Identifier and is associated with two other identifiers, namely the Customer Gateway Identifier and the Virtual Private Gateway Identifier. Your VPN Connection ID: vpn-YOUR-VPN-CONNECTION-IDYour Virtual Private Gateway ID: vgw-YOUR-VIRTUAL-PRIVATE-GATEWAY-IDYour Customer Gateway ID: cgw-YOUR-CUSTOMER-GATEWAY-ID A VPN Connection consists of a pair of IPSec tunnel security associations (SAs). It is important that both tunnel security associations be configured. IPSec Tunnel #1 #1: Internet Key Exchange Configuration Configure the IKE SA as follows - Authentication Method : Pre-Shared Key : YOUR-PRESHARED-KEY - Pre-Shared Key - Authentication Algorithm : shal - Encryption Algorithm : aes-128-cbc - Lifetime : 28800 seconds - Phase 1 Negotiation Mode : main - Perfect Forward Secrecy : Diffie-Hellman Group 2 #2: IPSec Configuration Configure the IPSec SA as follows: - Protocol : esp - Authentication Algorithm : hmac-shal-96 - Encryption Algorithm : aes-128-cbc - Lifetime : 3600 seconds - Mode : tunnel - Perfect Forward Secrecy : Diffie-Hellman Group 2 IPSec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We recommend configuring DPD on your endpoint as follows: - DPD Interval : 10 - DPD Retries : 3 IPSec ESP (Encapsulating Security Payload) inserts additional headers to transmit packets. These headers require additional space, which reduces the amount of space available to transmit application data. To limit the impact of this behavior, we recommend the following

configuration on your Customer Gateway: - TCP MSS Adjustment : 1387 bytes - Clear Don't Fragment Bit : enabled - Fragmentation : Before encryption #3: Tunnel Interface Configuration Your Customer Gateway must be configured with a tunnel interface that is associated with the IPSec tunnel. All traffic transmitted to the tunnel interface is encrypted and transmitted to the Virtual Private Gateway. The Customer Gateway and Virtual Private Gateway each have two addresses that relate to this IPSec tunnel. Each contains an outside address, upon which encrypted traffic is exchanged. Each also contain an inside address associated with the tunnel interface. The Customer Gateway outside IP address was provided when the Customer Gateway was created. Changing the IP address requires the creation of a new Customer Gateway. The Customer Gateway inside IP address should be configured on your tunnel interface. Outside IP Addresses: : YOUR-EXTERNAL-IP - Customer Gateway - Virtual Private Gateway : VIRTUAL-PRIVATE-NETWORK-EXTERNAL-IP Inside IP Addresses : 169.254.254.58/30 - Customer Gateway - Virtual Private Gateway : 169.254.254.57/30 Configure your tunnel to fragment at the optimal size: - Tunnel interface MTU : 1436 bytes #4: Border Gateway Protocol (BGP) Configuration: The Border Gateway Protocol (BGPv4) is used within the tunnel, between the inside IP addresses, to exchange routes from the VPC to your home network. Each BGP router has an Autonomous System Number (ASN). Your ASN was provided to AWS when the Customer Gateway was created. BGP Configuration Options: GP Configuration Options:: 64555 <--- CAN BE REPLACED BY YOUR OWN ASN.</th>- Customer Gateway ASN: 64555 <--- CAN BE REPLACED BY YOUR OWN ASN.</td>- Virtual Private Gateway ASN: 9059- Neighbor IP Address: 169.254.254.57 - Neighbor Hold Time : 30 Configure BGP to announce routes to the Virtual Private Gateway. The gateway will announce prefixes to your customer gateway based upon the prefix you assigned to the VPC at creation time. IPSec Tunnel #2 #1: Internet Key Exchange Configuration Configure the IKE SA as follows - Authentication Method : Pre-Shared Key - Pre-Shared Key : YOUR-PRESHARED-KEY - Authentication Algorithm : shal - Encryption Algorithm : aes-128-cbc - Lifetime : 28800 seconds - Phase 1 Negotiation Mode : main - Perfect Forward Secrecy : Diffie-Hellman Group 2 #2: IPSec Configuration

Configure the IPSec SA as follows: - Protocol : esp - Authentication Algorithm : hmac-shal-96 - Encryption Algorithm : aes-128-cbc - Lifetime : 3600 seconds - Mode : tunnel - Perfect Forward Secrecy : Diffie-Hellman Group 2 IPSec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We recommend configuring DPD on your endpoint as follows: - DPD Interval : 10 - DPD Retries : 3 IPSec ESP (Encapsulating Security Payload) inserts additional headers to transmit packets. These headers require additional space, which reduces the amount of space available to transmit application data. To limit the impact of this behavior, we recommend the following configuration on your Customer Gateway: - TCP MSS Adjustment : 1387 bytes - Clear Don't Fragment Bit : enabled - Fragmentation : Before encryption #3: Tunnel Interface Configuration Your Customer Gateway must be configured with a tunnel interface that is associated with the IPSec tunnel. All traffic transmitted to the tunnel interface is encrypted and transmitted to the Virtual Private Gateway. The Customer Gateway and Virtual Private Gateway each have two addresses that relate to this IPSec tunnel. Each contains an outside address, upon which encrypted traffic is exchanged. Each also contain an inside address associated with the tunnel interface. The Customer Gateway outside IP address was provided when the Customer Gateway was created. Changing the IP address requires the creation of a new Customer Gateway. The Customer Gateway inside IP address should be configured on your tunnel interface. Outside IP Addresses: : YOUR-EXTERNAL-IP - Customer Gateway - Virtual Private Gateway : EXTERNAL-VIRTUAL-PRIVATE-NETWORK-IP Inside IP Addresses - Customer Gateway - Virtual Private Gateway - Customer Gateway : 169.254.254.62/30 : 169.254.254.61/30 Configure your tunnel to fragment at the optimal size: - Tunnel interface MTU : 1436 bytes #4: Border Gateway Protocol (BGP) Configuration: The Border Gateway Protocol (BGPv4) is used within the tunnel, between the inside IP addresses, to exchange routes from the VPC to your home network. Each BGP router has an Autonomous System Number (ASN). Your ASN was provided to AWS when the Customer Gateway was created. BGP Configuration Options: : 64555 <--- CAN BE REPLACED WITH YOUR ASN - Customer Gateway ASN - Virtual Private Gateway ASN : 9059 : 169.254.254.61 - Neighbor IP Address - Neighbor Hold Time : 30

Configure BGP to announce routes to the Virtual Private Gateway. The gateway will announce prefixes to your customer gateway based upon the prefix you assigned to the VPC at creation time.

Additional Notes and Questions
- Amazon Virtual Private Cloud Getting Started Guide:
 http://docs.amazonwebservices.com/AmazonVPC/latest/GettingStartedGuide
- Amazon Virtual Private Cloud Network Administrator Guide:
 http://docs.amazonwebservices.com/AmazonVPC/latest/NetworkAdminGuide
- XSL Version: 2009-07-15-1119716

Step 2. Configure IPsec Tunnels on the Barracuda NextGen Firewall F-Series

For each IPsec tunnel, create a next-hop-interface and then configure two IPsec site-to-site VPN tunnel. Use the IP addresses provided in the Amazon generic VPN configuration file you downloaded at the end of Step 1.

Step 2.1 Create VPN Next-hop Interfaces

For each IPsec tunnel, a VPN next-hop interface must be created. Use the IP addresses provided in the Amazon generic VPN configuration file you downloaded at the end of Step 1.

```
[...]
IPSec Tunnel #1
_____
_____
[...]
#3: Tunnel Interface Configuration
[...]
Inside IP Addresses
                            : 169.254.254.58/30
: 169.254.254.57/30
 - Customer Gateway
 - Virtual Private Gateway
Configure your tunnel to fragment at the optimal size:
 - Tunnel interface MTU : 1436 bytes
[...]
IPSec Tunnel #2
_____
[...]
#3: Tunnel Interface Configuration
[...]
Inside IP Addresses
                                : 169.254.254.62/30
 - Customer Gateway
 - Customer Gateway : 169.254.254.62/30
- Virtual Private Gateway : 169.254.254.61/30
Configure your tunnel to fragment at the optimal size:
 - Tunnel interface MTU : 1436 bytes
[...]
```

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN-Service > VPN Settings .

- 2. Click Lock.
- 3. Click on Click here for Server Settings.

4. Click on the **Advanced** tab.

ver Settings				
ieneral Advance	ed			
- VPN Interface C	Configuration			
VPN Interf	MTU	IPs	Multicast	Add Edit Delete
VPN Next Hop	Interface Cor MTU	nfiguration	Multicast	Add
VPN Inter	MIU	Irs	Multicast	Edit Delete

5. Create a VPN next hop interface for each IPsec tunnel by clicking Add in the VPN Next Hop Interface

Configuration section.

- a. In the **VPN Interface Properties** window enter:
 - VPN Interface Index Enter a number between 0 and 99. Each interface index number must be unique. e.g., IPsec

tunnel1: 10 and IPsec tunnel: 11

- **MTU** Enter 1436.
- IP Addresses Enter the Inside IP Address for the Customer Gateway provided by Amazon. e..g, IPsec

tunnel1: 169.254.254.58/30, IPsec tunnel 2: 169.254.254.62/30

b. Click **OK**.

VPN Interface Properties	—
VPN Interface Properties	π
VPN Interface Index	
MTU	1436 • 169.254.254.58/30
IP Addresses	163.234.234.36730
Multicast Addresses	
ОК	Cancel

6. Click **OK**.

7. Click Send Changes and Activate.

Step 2.2 Configure Two Site-to-Site IPsec Tunnels

Configure two site-to-site IPsec tunnels using the VPN next-hop interfaces. Make sure to use the correct IP addresses and

corresponding next-hop interfaces listed in the Amazon generic VPN configuration file for each tunnel.

```
Amazon Web Services
Virtual Private Cloud
[...]
IPSec Tunnel #1
_____
#1: Internet Key Exchange Configuration
Configure the IKE SA as follows
- Authentication Method : Pre-Shared Key
 - Pre-Shared Key : YOUR-PRESHARED-KEY
- Authentication Algorithm : shal
 - Encryption Algorithm : aes-128-cbc
 - Lifetime : 28800 seconds
 - Phase 1 Negotiation Mode : main
- Perfect Forward Secrecy : Diffie-Hellman Group 2
#2: IPSec Configuration
Configure the IPSec SA as follows:
- Protocol : esp
 - Authentication Algorithm : hmac-shal-96
 - Encryption Algorithm : aes-128-cbc
 - Lifetime : 3600 seconds
 - Mode : tunnel
 - Perfect Forward Secrecy : Diffie-Hellman Group 2
IPSec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We
recommend configuring DPD on your endpoint as follows:
 - DPD Interval : 10
 [...]
#3: Tunnel Interface Configuration
[...]
Outside IP Addresses:
- Customer Gateway : YOUR-EXTERNAL-IP-ADDRESS
- Virtual Private Gateway : AMAZON-VPN-GATEWAY-IP-ADDRESS-TUNNEL-2
[...]
Configure your tunnel to fragment at the optimal size:
- Tunnel interface MTU : 1436 bytes
[...]
IPSec Tunnel #2
_____
#1: Internet Key Exchange Configuration
Configure the IKE SA as follows
- Authentication Method : Pre-Shared Key
- Pre-Shared Key : YOUR-PRESHARED-KEY
 - Authentication Algorithm : shal
 - Encryption Algorithm : aes-128-cbc
 - Lifetime : 28800 seconds
 - Phase 1 Negotiation Mode : main
 - Perfect Forward Secrecy : Diffie-Hellman Group 2
#2: IPSec Configuration
Configure the IPSec SA as follows:
 - Protocol : esp
 - Authentication Algorithm : hmac-shal-96
 - Encryption Algorithm : aes-128-cbc
 - Lifetime : 3600 seconds
 - Mode : tunnel
 - Perfect Forward Secrecy : Diffie-Hellman Group 2
```

```
IPSec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We
recommend configuring DPD on your endpoint as follows:
    - DPD Interval : 10
[...]
#3: Tunnel Interface Configuration
[...]
Outside IP Addresses:
    - Customer Gateway : YOUR-EXTERNAL-IP-ADDRESS
    - Virtual Private Gateway : AMAZON-VPN-GATEWAY-IP-ADDRESS-TUNNEL-2
[...]
Configure your tunnel to fragment at the optimal size:
    - Tunnel interface MTU : 1436 bytes
```

[...]

Services > VPN-Service > Site to Site .

- 2. Click on the IPSEC IKEv1 Tunnels tab.
- 3. Click Lock.
- 4. For each IPsec tunnel, right-click and click New IPsec IKEv1 tunnel.
 - a. Enter the IPsec tunnel configurations:
 - i. Enter a Name. e.g, IPsec Tunnel 1: IPsecAWSTunnel1 and for IPsec Tunnel 2: IPsecAWSTunnel2
 - ii. Enter the Phase 1 and Phase 2 settings:

	Phase 1	Phase 2
Encryption	AES	AES
Hash Meth.	SHA	SHA
DH-Group	Group2	Group 2
Lifetime(sec)	28800	3600
Perfect Forward Secrecy		Enable

iii. In the Local Network s tab:

- Local IKE Gateway Enter your external IP address. If you are using a dynamic WAN interface enter 0.0.0.0
- Network Address Enter the Inside IP Address of the Customer Gateway (without the /30) and click Add.
 e.g., IPsec tunnel 1 169.254.254.58 and for IPsec tunnel 2 169.254.254.62.

iv. In the Remote Networks tab:

- Remote IKE Gateway Enter the Outside IP Address of the Virtual Private Gateway .
- v. In the **Peer Identification** tab:
 - Shared Secret Enter the Amazon Pre-Shared Key.

vi. In the **Advanced** tab:

- **DPD intervals (s)** Enter 10.
- Interface Index Enter the VPN Next Hop Interface index number you entered in step 1.1. e.g., IPsec tunnel

1 10 and for IPsec tunnel 2 11.

• VPN Next Hop Routing – Enter the Inside IP address of the Virtual Private Gateway. e.g., IPsec tunnel

1 169.254.254.57 and for IPsec tunnel 2 169.254.254.61

```
vii. Click OK.
```

DPD interval (s)	e Policy Advanced RAW IPSec				
		VPN N	ext Hop Routing 169.254.	254.57	
HW Accel. Use A	cceleration Card (if present) 💌	Encaps. M	ode Auto Detec.		
Interface Index 10					
Local Networks Identify			Remote Networks Peer	Identification	
Initiates Tunnel	Yes (active IKE)	-	Shared Secret	•••••	•••••
Local IKE Gateway	0.0.0.0		CA Root	-Use-All-Known-	T
ID-type	IPV4_ADDR_SUBNET	•	×509 Condition		Edit/Show
Using "VPN Next Hop Re	outing" to determine network.		Explicit ×509		Ex/Import 🔻
ame IPsecAWSTunnel2 Basics TI - VPN Envelop DPD interval (s) <defa< th=""><th>Disabled Policy Advanced RAW IPSec ut></th><th>VPN Ne</th><th>ext Hop Routing 169.254.2</th><th>254.61</th><th></th></defa<>	Disabled Policy Advanced RAW IPSec ut>	VPN Ne	ext Hop Routing 169.254.2	254.61	
			ode Auto Detec.		
Interface Index 11					
			Remote Networks Peer	Identification	
Local Networks Identify					
Local Networks Identify	Yes (active IKE)	•			
	Yes (active IKE)		Remote IKE Gateway	87.238.46	
Initiates Tunnel Local IKE Gateway ID-type			ID-type	87.238.46 IPV4_ADDR_SUBNET louting" to determine netwo	-

5. Click Send Changes and Activate.

You now have two VPN next-hop interfaces listed in the Interfaces/IPs section on the CONTROL > Network page and the

VPN tunnels on the **CONTROL > VPN > STATUS**.

Server Network	Processes	System 🥋 Licenses
Interface/IP	Label	Ping MAC of duplicate IP
🖽 🔤 dhcp		
📺 連 eth0		
🛓 🥘 lo		
🛓 🛶 🕹 🖕 🛓		
🚛 🛶 vpn11		
🚛 📥 vpnr10		
🗄 📥 vpnr11		
Interfaces/IPs IPs Interfac	es Proxy ARPs ARP	s Statistics OSPF RIP BGP

STATUS	CONFIG CONTROL	FIREWALL	. V	PN	PROXY	LOG	IS STATISTIC	S EVENTS	SSH				6
Site-to-	Site Client-to-Site	Status			2	Access Cache	2 Drop Cache	Client Downloads	Selection	Filter	Show CRL	Refresh (F5)	Disconnect
Tunnel	Name		Туре	Group	I	State	Succ.	Fail	Last Access	Last Peer	Last Info	Last Duration	Last Client
IPSEC	IPsecAWSTunnel2-169.254.2	54.61-169.25	1			ACTIVE	1	1	2m 0s	87.238.85.46	Access Granted	2m 0s	Unknown
IPSEC	IPsecAWSTunnel1-169.254.2	54.57-169.25				ACTIVE	37	5	50m 19s	87.238.85.42	Access Granted	50m 19s	Unknown

Step 3. Configure the BGP Service

Configure BGP routing to learn the subnets on the other side of the VPN tunnels. The BGP route propagated by the second

(backup) IPsec tunnel is artificially elongated so traffic is routed per default over the first IP tunnel, as suggested by Amazon.

```
[...] IPSec Tunnel #1
_____
[...]
#4: Border Gateway Protocol (BGP) Configuration:
[...]
BGP Configuration Options:
- Customer Gateway ASN : YOUR-ASN-NUMBER (e.g., 64555)
- Virtual Private Gateway ASN : 9059
- Neighbor IP Address : 169.254.254.57
- Neighbor Hold Time : 30
[...]
IPSec Tunnel #2
_____
[...]
#4: Border Gateway Protocol (BGP) Configuration:
[...]
BGP Configuration Options:
- Customer Gateway ASN : 64555
- Virtual Private Gateway ASN : 9059
- Neighbor IP Address : 169.254.254.61
- Neighbor Hold Time : 30
[...]
```

Step 3.1 Configure Routes to be Advertised via BGP

Only routes with the parameter **Advertise** set to **yes** will be propagated via BGP.

- 1. Go to **CONFIGURATION > Configuration Tree > Box > Network**.
- 2. Click **Lock**.
- 3. (optional) To propagate the management network, set Advertise Route to yes.
- 4. In the left menu, click on **Routing**.
- 5. Double-click on the **Routes** you want to propagate, and set **Advertise Route** to **yes**.
- 6. Click **OK**.
- 7. Click Send Changes and Activate.

Step 3.2 Configure the BGP Routes

Configure the BGP setting for the BGP service on the Barracuda NextGen Firewall F-Series.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > OSPF-RIP-BGP-Service > OSPF/RIP/BGP Settings.

- 2. Select **yes** from the **Run BGP Router** list.
- 3. Select **advertise-learn** from the **Operations Mode** list.

Operational Setup		
Run OSPF Router	no	▼ ¹
Run RIP Router	no	• 📋
Run BGP Router	yes	▼ ¹
Hostname		â
Operation Mode	advertise-learn	•
Router ID	10.10.200.101	ē = 🔒

- 4. In the left menu, click **BGP Router Setup**.
- 5. Enter the **AS Number** (e.g., 64555).
- 6. In the **Networks** table, add the local network(s)(e.g., 10.10.200.0/24).

BGP Router Configuration									
AS Number	64555								Ô
Terminal Password	Current								â
	New	••••	•						
	Confirm	••••	•						
	Strength								
Networks 🥝				P	÷	×	at	Ð	Ô
	Name		Network Prefix						
	LocalNet	work	10.10.200.0/24						

- 7. In the left menu, expand **Configuration Mode** and click **Switch to Advanced Mode**.
- 8. Click the Set button for the Advanced Settings. The Advanced Settings window opens.
- 9. Set the **Hold timer** to 30 seconds.
- 10. Set the Keep Alive Timer to 10 seconds.
- 11. Click **OK**.
- 12. Click Send Changes and Activate.

Step 3.3 . Add a BGP Neighbor for each IPsec Tunnel

To dynamically learn the routing of the neighboring network, set up a BGP neighbor for each VPN next-hop interface.

- 1. In the left menu of the OSPF/RIP/BGP Settings page, click Neighbor Setup IPv4.
- 2. Click **Lock**.
- 3. For each IPsec tunnel, click the plus sign (+) next to the **Neighbors** table to add a new neighbor.
- 4. Enter a Name for the neighbor. e.g., AWS1 and AWS2
- 5. In the **Neighbors** window, configure the following settings in the **Usage and IP** section:
 - Neighbor IPv4 Enter the inside IP Address of the Virtual Private Gateway (remote address for the VPN next

hop interface on the NextGen Firewall F-Series) e.g., IPsec Tunnel 1:169.254.254.57 and for IPsec Tunnel

2169.254.254.61.

- OSPF Routing Protocol Usage Select no.
- RIP Routing Protocol Usage Select no.
- BGP Routing Protocol Usage Select yes.
- 6. In the **BGP Parameters** section, configure the following settings:
 - AS Number: Enter the ASN for the remote network: 9059
 - Update Source: Select Interface.vpnr
 - Update Source Interface: Enter the vpnr interface for the IPsec tunnels. e.g., IPsec Tunnel 1: vpnr10 and for IPsec

Tunnel 2 vpnr11.

-Usage and IP		
Neighbor IPv4	169.254.254.57	ā = î
Active	yes	▼ ⁽¹⁾
OSPF Routing Protocol Usage	no	▼ û
RIP Routing Protocol Usage	no	• 🗎
BGP Routing Protocol Usage	yes	• 🗎
0005 D		
OSPF Parameters		
Neighbor Priority		â
Dead Neighbor Poll Interval		â
BGP Parameters		
AS Number	9059	â
Description		â
Peer Group Affiliation		· Â
Update Source	Interface	· 🗎
Update Source Interface	vpnr10	â
Update Source IPv4 Address		۵ =
Peer Filtering For Input	Set Clear NOTSET: No section present	â
Peer Filtering For Output	Set Clear NOTSET: No section present	â

Usage and IP		
Neighbor IPv4	169.254.254.61	Ē 🗆
Active	yes	•
OSPF Routing Protocol Usage	no	•
RIP Routing Protocol Usage	no	•
BGP Routing Protocol Usage	yes	•
OSPF Parameters		
Neighbor Priority		
Dead Neighbor Poll Interval		
BGP Parameters		
AS Number	9059	
Description		
Peer Group Affiliation		•
Update Source	Interface	•
	vpnr11	
Update Source Interface	(part)	
Update Source Interface Update Source IPv4 Address	TP/III / I	8 8
	Set Clear NOTSET: No section present	1

- 7. Click **OK**.
- 8. Click Send Changes and Activate.

Step 3.4 . Add an Access List for the Second IPsec Tunnel

- 1. In the left menu of the OSPF/RIP/BGP Settings page, click Filter Setup IPv4.
- 2. In the Access List IPv4 Filters section, click +.
- 3. Enter a Name for the Access List. e.g., 2ndGWIP The Access List IPv4 windows opens.

- 4. Click + to add an access list **Type**. The **Type** window opens.
- 5. Select **permit** from the **Type** dropdown.
- 6. Enter the Inside IP for the Virtual Private Gateway for IPsec Tunnel #2. E.g., 169.254.254.62
- 7. Click OK.
- 8. Click **OK**.

Step 3.5 Add a Filter Setup for the Second IPsec Tunnel

To make the route over the first IPsec tunnel the preferred route, we will lengthen the AS-Path of the second tunnel.

- 1. In the left menu of the OSPF/RIP/BGP Settings page, click Filter Setup IPv4.
- 2. Click Lock.
- 3. In the Route Map IPv4 Filters section, click on +. The Route Maps IPv4 window opens.
- 4. In the BGP Specific Conditions section, click +. The Route Map Entry window opens.
- 5. In the Route Map Entry window, specify the following settings:
 - Sequence Number Enter a unique sequence number (e.g., 1). This sequence number must be unique across all

route maps. For additional entries, iterate the sequence numbers.

- Type Select permit.
- Match Condition Select Gateway_IP.
- Gateway IP (Access List) Select the access list for the listed created in Step 3.4.
- Set Action Select AS_Path.
- Set addition to AS-Path Enter Amazons ASN number 9059.
- 6. Click **OK**.
- 7. Click OK.
- 8. Click Send Changes and Activate.

Step 4. Create an Access Rule for VPN Traffic

To allow traffic to and from the VPN networks, a pass access rule is needed. You also need to set the **Clear DF bit** and **Force Maximum Segment Size** settings according to the Amazon configuration file in the advanced firewall rule settings. You also need to set **Reverse Interface (Bi-directional)** to **Any** to allow return traffic using a different VPN tunnel than was used to initiate the connection.

5	[]
-	<pre>IPSec ESP (Encapsulating Security Payload) inserts additional headers to transmit packets. These headers require additional space, which reduces the amount of space available to transmit application data. To limit the impact of this behavior, we recommend the following configuration on your Customer Gateway: - TCP MSS Adjustment</pre>

Step 5. Create a Pass firewall rule:

- **Bi-Directional** Enable.
- Source Select the local network(s) you are propagating via BGP.
- Service Select the service you want to have access to the remote network or ALL for complete access.
- **Destination** Select the remote VPC subnet(s).
- Connection Method Select Original Source IP.

Views 🔕	Pass -	CAL-2-AWS-NETWORK	
Rule	Pass		
Advanced	rectional	💍 📄 Dynamic Rule	🕘 🥅 Deactivate Rule
ICMP Handling	Source	Service	Destination
Object Viewer 🔕	Trusted LAN	- Any	✓ AWS Remote Networks
	Ref: Trusted LAN Networks	Ref: Any-TCP	172.16.0.0/24
Object Viewer	Ref: Trusted Next-Hop Networks	Ref: Any-UDP	
		Ref: ICMP	
		ALLIP	
	Authenticated User	Policy	Connection Method
	Any	 IPS Policy 	No SNAT
		Default Policy	 Std Client
		Application Policy	
		No AppControl	
		Time Objects	.
		Always	•
		QoS Band (Fwd) VoIP (ID 2)	-
		QoS Band (Reply)	-
		Like-Fwd	•

- 1. In the left navigation, click on **Advanced.**
- 2. In the TCP Policy section, set Force MSS (Maximum Segment Size) to 1387.

TCP Policy	
Generic TCP Proxy	OFF
Syn Flood Protection (Forward)	Server Default
Syn Flood Protection (Reverse)	Server Default
Accept Timeout (s)	10
Last ACK Timeout (s)	10
Retransmission Timeout (s)	300
Halfside Close Timeout (s)	30
Disable Nagle Algorithm	
Force MSS (Maximum Segment Size)	1387
Generic IPS Patterns	-NONE-
Port Protocol Protection Policy	Use Matching Service Settings
Raw TCP mode	No

3. In the Miscellaneous section, set Clear DF Bit to Yes.

Miscellaneous				
Authentication	No Inline Authentication			
IP Counting Policy	Default Policy			
Time Restriction				
Clear DF Bit	Yes			
Set TOS Value	0 (TOS unchanged)			
Prefer Routing over Bridging	No			
Color	RGB(0,0,0)			

4. In the Dynamic Interface Handling section, set Reverse Interface (Bi-directional) to Any.

Matching	
No	
Any	•
Enabled	
	No Any

5. Click **OK**.

6. Move the access rule up in the rule list, so that it is the first rule to match the firewall traffic.

7. Click Send Changes and Activate.

You now have two IPsec VPN tunnels connecting your F-Series firewalls to the Amazon AWS cloud. Per default, the first IPsec

tunnel is chosen. It may take some time for BGP to learn the new routes, in case of a failure.

Vetwork		Next Ho	р			Me	tric	Local Pref	Weight	Path	Origin
E											
	.200.0/24	0.0.0.0				0			32768	Local	IGP
🗄 🖽 AS 9059											
🗄 📲 Neigh	or: 169.254	.254.61									
🕂 🕡 📔 Neigh	or: 169.254	.254.57									
💷 172.16	0.0	169.25	4.254.61						0	9059	IGP
	6.0.0	169.25	4.254.57						0	9059	IGP
terfaces/IPs IPs	Interfaces	Proxy ARPs	ARPs	Statistics	OSPF	RIP	BGP	Switch Info	Ndisc		

AWS VPN status in the Amazon AWS management interface

vpn-00665074 NG2AWSCloud							
Summary		Tunnel [Details	Static Routes	Т	ags	
VPN Tunnel	IP A	ddress	Status	Status Last Cha	anged	Details	
Tunnel 1	87.2	38.85.46	UP	2014-05-27 17:3	8 UTC+2	1 BGP F	OUTES
Tunnel 2	87.2	38.85.42	UP	2014-05-27 17:3	8 UTC+2	1 BGP F	OUTES

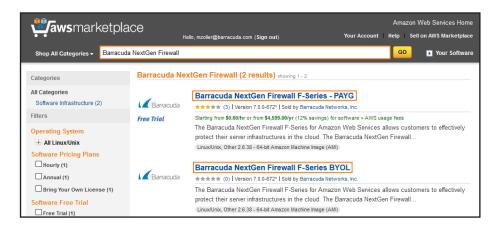
3.10 How to Deploy an F-Series Firewall in AWS via CloudFormation Template

CloudFormation templates allow you to automate your deployments in AWS and make them more consistent. You can replicate the deployment multiple times for testing and production, or you can spin up additional environments in other regions.

3.10.1 CloudFormation Templates

CloudFormation templates are available for all our AWS reference architectures in the Barracuda Networks GitHub account: https://github.com/barracudanetworks/ngf-aws-templates.

3.10.2 Before You Begin


Verify that the AMI image IDs used in the CloudFormation template match the IDs for the NextGen Firewall image listed in the AWS Marketplace. The AMI disk images change for every released version. Each region has a separate AMI ID.

Step 1. Subscribe to NextGen Firewall in AWS Marketplace

To be able to deploy a NextGen Firewall image via the CloudFormation template, you must agree to the **Terms of Service** and subscribe to the image in the AWS Marketplace. You need to do this only once per account, but it must be done

separately for PAYG and BYOL images.

- 1. Go to the AWS Marketplace: https://aws.amazon.com/marketplace/
- 2. Search for Barracuda NextGen Firewall.
- 3. Click on the Barracuda NextGen Firewall F-Series PAYG or Barracuda NextGen Firewall F-Series BYOL image.

4. Click Continue.

Barracuda	Barracuda NextGen Firewall F-Series - Sold by: Barracuda Networks, Inc.	PAYG	
	30 Day Free Trial Available - The Barracuda NextGen Firewall F-S protect their server infrastructures in the cloud. The Barracuda NextG firewall that was purpose-built for efficient deployment and operation environments. Beyond its powerful network firewall, IPS, and VPN te next-generation firewall technologies including comprehensive applic	Sen Firewall F-Series is an e within dispersed, highly dyn chnologies, the F-Series inte	nterprise-grade next-generation amic, and security-critical network egrates an extensive set of
Customer Rating	; ★★★★★ I (3 Customer Reviews)	Continue	You will have an opportunity to review your order before launching or being
Latest Version	7.0.0-672* (Other available versions)		charged.

5. Click on the **Manual Launch** tab.

6. Click Accept Software Terms.

Launch on EC2: Barracuda NextG	en Firewall F-Serie	es - PAYG	
1-Click Launch Review, modify and launch	Manual Launch With EC2 Console, API or CLI		Price for your Selections:
Click "Accept Softwa Software	re Terms" to gain access	Accept Software Terms	
	you will have access to this softwar AMIs listed below directly from the gement tools.	You will be subscribed to this software and agree that your use of this software is subject to the pricing terms and the seller's End User License Agreement (EULA) and your use of AWS services is subject to the AWS Customer Agreement.	

You will now receive an email from Amazon confirming your subscription. You can now use the provided AMI in your

CloudFormation templates.

~	Thank you for subscribing to Barracuda NextGen Firewall F-Series - PAYG
	Software and AWS hourly usage fees apply when the instance is running and will appear on your monthly bill.

Step 2. (BYOL only) Create Stack Policy to Protect Firewall Instance from Stack Updates

Protect your firewall instances from being replaced during stack updates use a stack policy when deploying the

CloudFormation template. Replacing the instance automatically invalidates your license. If your license is invalidated, contact

Barracuda technical support during the 15 day grace period to transfer your license to the instance.

Step 3. Deploy the CloudFormation Template

CloudFormation templates can be deployed via the AWS web console, CLI, REST, or PowerShell.

- 1. Log into the AWS console.
- 2. Click Services and select CloudFormation.
- 3. Click Create Stack.

Create Stack	Actions -	Design template
Filter: Active -	By Name:	

- 4. Select Upload a template to Amazon S3.
- 5. Click **Browse** and select the template file.

Choose a template	A template is a JSON-formatted text file that describes your stack's resources and their properties. Learn more.
	O Select a sample template
	×
	Upload a template to Amazon S3
	Browse SingleNGF.cftemplate
	O Specify an Amazon S3 template URL

6. Click Next.

7. Enter the Stack name.

8. (optional) If the template includes parameters, fill in the values in the **Parameters** section.

Specify Details							
Specify a stack name and parameter values. You can use or change the default parameter values, which are defined in the AWS CloudFormation template. Learn more.							
Stack name	DOC-SingleNGF]					
Parameters							
KeyName	MZ_FRA_KEY Name of an existing EC2 KeyPair to enable SSH acce	ss to the instances					

9. Click Next.

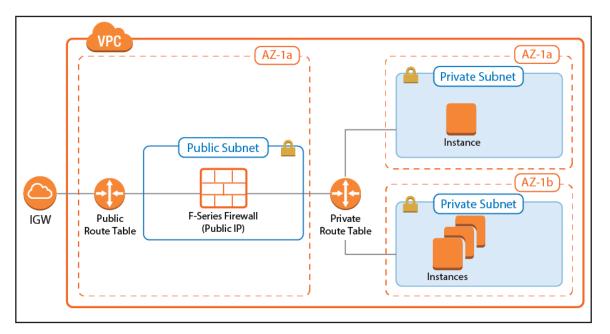
- 10. (optional) Enter **Tags** for your stack.
- 11. In the **Advanced** section, set additional options for your stack:
 - Notification options
 - **Timeout** Set the timeout in minutes.
 - Rollback on failure When set to yes, the deployment will be rolled back if any errors are encountered.

Stack policy – For BYOL images, it is highly recommended to protect the firewall instance from stack updates.

Stack updates that require redeploying the firewall instance will invalidate the license for BYOL firewalls.

- 12. Click Next.
- 13. Review the settings and click **Create**.

The resources defined in the template are now deployed. This may take a couple of minutes. When the **Status** column shows


CREATE_COMPLETE, the template has been deployed successfully. If the firewall fetches a PAR file from a Control Center, it

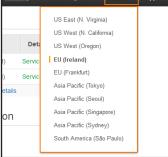
may take a couple of minutes for the firewall to be available.

Create Stack Actions Design template					
Filter: Complete - By Name:					
Stack Name	Created Time	Status	Description		
DOCSingleNGF	2016-10-05 13:49:42 UTC+0200	CREATE_COMPLETE	AWS Single NGF Template		

3.11 How to Deploy an F-Series Firewall in AWS via Web Portal

The Barracuda NextGen Firewall F in AWS secures and connects the services running in your AWS virtual private cloud (VPC). The firewall monitors and secures all traffic between subnets to and from the Internet. It also connects your cloud resources either to your on-premise networks with site-to-site VPN, or to your remote users with client-to-site VPN and SSL VPN. After the deployment the Instance ID is the root password set to log in via NextGen Admin. Logging in via SSH is only possible through certificate file set during the last deployment step.

Step 1. Create an IAM Role for the Firewall

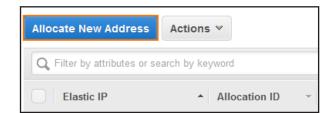

Create an IAM role for your firewall instance. Verify that the all the required IAM policies are attached to the role.

For step-by-step instructions, see

3.1 How to Create an IAM Role for an F-Series Firewall in AWS(page 79)

Step 2. Select the AWS Datacenter

- 1. Log into the AWS console.
- 2. In the upper right, click on the datacenter location, and select the datacenter you want to deploy to from the list.



The selected datacenter location is now displayed in the AWS console.

Step 3. Create an Elastic IP

Create an elastic IP address. This is the public IP address that will be used for your firewall instance.

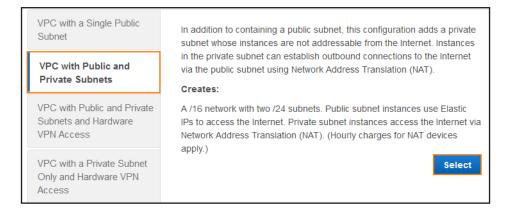
- 1. Log into the AWS console.
- 2. Click Services and select EC2.
- 3. In the Network & Security section of the left menu, click on Elastic IPs.
- 4. Click Allocate New Address.

5. Click Yes, Allocate.

An unassigned elastic IP is now added to the list. Copy the **Allocation ID** for future use.

Allocate New Address	Actions 🗸			⊕ ♦ 0
Q. Filter by attributes or sea	arch by keyword		0	$ \langle \langle 1 \text{ to 5 of 5} \rangle \rangle $
Elastic IP	▲ Allocation ID - Instance	· Private IP Address	- Scope	• Public DNS
52.30.191.243	spatia MERCI (MARC)	Dec. (reg) 10.04.0.201	spc. 608ueb17	ard 42-35-191-243 au
52.30.210.159	eipalloc-9d2ab2f8		vpc	

Step 4. Create VPC with VPC Wizard


Use the VPC wizard to create a VPC with one public and one private subnet. The firewall will be deployed in the public subnet.

If needed, you can add additional subnets after the deployment.

- 1. Log into the AWS console.
- 2. Click Services and select VPC.
- 3. Click Start VPC Wizard. The VPC wizard opens.

Resources 🕹				
Start VPC Wizard	Launch EC2 Instances			
Note: Your Instances will launch in the EU (Ireland) region.				

4. Select VPC with Public and Private Subnets and click Select.

- 5. On the VPC with Public and Private Subnets change the following settings:
 - IP CIDR block Enter a /16 CIDR block that does not overlap with any of your other networks.
 - VPC Name Enter the name.
 - Public subnet Enter the /24 subnet used for the firewall instance.
 - Public subnet name Enter a name for the public subnet.
 - (optional) Availability Zone Select which availability zone the VPC is created in. Select No Preference for AWS to

assign it automatically.

- Private subnet Enter the /24 subnet used for the instances protected by the firewall.
- Private subnet name Enter a name for the private subnet.
- Elastic IP Allocation ID Enter the Allocation ID for the elastic IP address created in step 1.

IP CIDR block:* VPC name:	
Public subnet:*	10.100.0.0/24 (251 IP addresses available)
Availability Zone:*	No Preference
Public subnet name:	Public subnet
Private subnet:*	10.100.1.0/24 (251 IP addresses available)
Availability Zone:*	No Preference
Private subnet name:	Private subnet
	You can add more subnets after AWS creates the VPC.
Specify the details of your NAT gate	way (NAT gateway rates apply).
Elastic IP Allocation ID:*	eipalloc-9d2ab2f8

- 6. (optional) Set Enable DNS hostnames to NO to only use IP addresses to access your VPC.
- 7. Click Create VPC.

Hardware tenancy:* Default

The VPC is now listed in the **Your VPCs** list.

Create VPC Action	15 ¥						C	\$ 0
Qvpc-0a84896f	×						≪ < 1 to	1 of 1 VPC $> \gg$
Name	▲ VPC ID ···	State	VPC CIDR	DHCP options set	 Route table 	Network ACL	· Tenancy	 Default
DOC-VPC	vpc-0a84896f	available	10.100.0.0/16	dopt-d2a7edb9	rtb-9ca959f8 P	acl-0605eb62	Default	No

Step 5. Delete the NAT Gateway

Delete the NAT gateway.

The VPC wizard automatically creates a NAT gateway instance. But since the firewall already includes this functionality, the

NAT gateway instance must be deleted.

- 1. Log into the AWS console.
- 2. Click Services and select VPC.
- 3. In the Virtual Private Cloud section of the left menu, click on NAT Gateways.
- 4. (optional) Enter the VPC ID in the **search bar**.
- 5. Select the NAT gateway created for your VPC and click **Delete NAT Gateway**. The **Delete NAT Gateway** pop-over

window opens.

Create NAT Gateway Delete NAT Gatew	/ay		ତ କ ଡ
Q search : vpc-0a84896f ⊗ Add filter		Θ	$ \langle \langle 1 \text{ to 1 of 1} \rangle \rangle $
NAT Gateway - Status - Elastic	P Address v Private IP Address v Network Interface	ID - VPC - Subnet	- Created
nat-0fdffb7c1 Available 52.30.21	0.159 10.100.0.206 eni-26bb755f	vpc-0a84896f subnet-6e06	6f10a March 7, 2016 at 8

6. Click Delete NAT Gateway.

The elastic IP address associated with the NAT gateway is released automatically and is now free to use for the firewall

instance.

Step 6. Deploy the NextGen Firewall F Instance

You can deploy the NextGen Firewall F instance in two different ways from the AWS Marketplace: BYOL and hourly. The

firewall instance is deployed into the public subnet and can be configured to use either a single network interface or one

network interface per subnet. The number of network interfaces is limited by the instance size.

- 1. Log into the AWS console.
- 2. Click Services and select EC2.
- 3. In the Create Instance section, click Launch Instance. The VPC wizard starts.

- 4. In the left menu, click **AWS Marketplace**.
- 5. Enter Barracuda NextGen in the Search for AWS Marketplace Product search box.
- 6. Click **Select** next to the image type you want to deploy: BYOL or hourly.

Q Barracuda Nex		of 2 Products	> >
Free Trial	Barracuda NextGen Firewall F-Series (formerly Barracuda NG Firewall) ★★★★★ (3) 6 21-057 Previous versions Sold by Barracuda Networks, Inc. Starting from \$0.66/hr or from \$4,5593yr (up to 13% savings) for software + AWS usage fees LinuxUnk, Other 2.6.38 64-bit Amazon Machine Image (AMI) Updated: 225/16 The Barracuda NextGen Firewall F-Series for Amazon Web Senices allows customers to effectively protect their server infrastructures in	Select	
	the cloud. The Barracuda NextGen More info		
Barracuda	Barracuda NextGen Firewall F-Series BYOL (former Barracuda NG Firewall) ******(0)162.1-057 Previous versions (Sold by Barracuda Networks, Inc. Bring Your Own License + AWS usage fees LinuxUlnik, Other 2.6.38(164-bit Amazon Machine Image (AMI) Updated: 2/25/16 The Barracuda NextGen Firewall F-Series for Amazon Web Services allows customers to effectively protect their server infrastructures in the cloud. The Barracuda NextGen More info	Select	

7. Select the Instance Type. If you are deploying a BYOL image, verify that the number of CPU cores of the instance

matches your license.

8. Click Next: Configure Instance Details.

1. Choo	se AMI 2. Choose Instance Typ	3. Configure I	nstance 4. Ad	d Storage 5. Tag Ins	stance 6. Configure S	Security Group 7. Review			
Step	2: Choose an Inst	ance Type							^
0	Compute optimized	c4.4xlarge	62	16	30	EBS only	Yes	High	
0	Compute optimized	c4.8xlarge	132	36	60	EBS only	Yes	10 Gigabit	
	Compute optimized	c3.large	7	2	3.75	2 x 16 (SSD)	-	Moderate	
	Compute optimized	c3.xlarge	14	4	7.5	2 x 40 (SSD)	Yes	Moderate	~
						Cancel Previous R	eview and Launch Nex	t: Configure Instance Det	tails

- 9. Configure the Instance Details:
 - (HA only) Number of instances To deploy two instances to create an HA cluster, enter 2. For stand-alone

deployments, deploy one instance.

- Network Select the VPC created in step 2.
- **Subnet** Select the public subnet.

Number of instances	i	1 Launch into Auto Scaling Group (j)
Purchasing option	(j)	Request Spot instances
Network	(j)	vpc-0a84896f (10.100.0.0/16) DOC-VPC Create new VPC
Subnet	(j)	subnet-6e06f10a(10.100.0.0/24) Public subnet eu v Create new subnet 251 IP Addresses available
Auto-assign Public IP	(j)	Use subnet setting (Disable)

- 10. (optional) Add additional Network Interfaces:
 - Click Add Device. The device is added to the list.
 - Select the **Subnet** the network interface is connected to.
 - (optional) Enter the **Primary IP** address for this interface. The IP address must be in the subnet selected above.
- 11. Click Next:Add Storage.
- 12. (optional) Change the **Volume Type** as needed.
- 13. Click Next: Tag Instance.
- 14. Click Next: Configure Security Group.
- 15. (optional) Click Add Rule and add rules for ICMP
 - Type Select All ICMP.
 - Source Select Anywhere.
- 16. (optional) Click Add Rule and add rules for HTTP
 - Type Select HTTP.
 - Source Select Anywhere.
- 17. Click Review and Launch.
- 18. Click Launch. The Select and existing key pair or create a new key pair pop-over window opens.
- 19. From the drop-down list, select **Choose an existing key pair** or **Create a new key pair**. The certificate is valid only for SSH logins with the root user. For NextGen Admin the Instance ID is the default password.
- 20. Click the checkbox to verify that you have access to the selected key or click **Download Key Pair** to download a new key pair.
- 21. Click Launch Instances.

Select an existing key pair or create a new key pair	×						
A key pair consists of a public key that AWS stores, and a private key file that you store. Together, they allow you to connect to your instance securely. For Windows AMIs, the private key file is required to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to securely SSH into your instance.							
Note: The selected key pair will be added to the set of keys authorized for this instance. Lea about removing existing key pairs from a public AMI.	arn more						
Create a new key pair	~						
Key pair name							
NGF_keys							
Download Ke	y Pair						
You have to download the private key file (*,pem file) before you can continue Store it in a secure and accessible location. You will not be able to downlo file again after it's created.							
Cancel Launch Ins	stances						

On the Launch Status page, locate and copy the Instance IDs. This is the default password used to log in via NextGen

Admin.

Step 7. Disable Source/Destination Check for the Network Interface

For the interface to be allowed to forward traffic with a destination IP address that is different from the IP addresses assigned

to the network interfaces, you must disable the source/destination check.

- 1. Log into the AWS console.
- 2. Click Services and select EC2.
- 3. In the Network & Security section of the left menu, click on Network Interfaces.
- 4. (optional) Filter the list using the Instance ID.
- 5. Right-click on the network interface, and select Change Source/Dest. Check.

Q	search : i-fea22e76	Add filter		
	Name	• Network interfe•	Subnet ID × VPC ID	- Zone -
	ENI Public Subnet	eni-25cd035c	Attach	eu-west-1c
	ENI Private Subnet	eni-f3cb058a	Detach	eu-west-1c
			Delete	
			Manage Private IP Addresses	
			Associate Address	
			Disassociate Address	
			Change Termination Behavior	
			Change Security Groups	
			Change Source/Dest. Check	
			Add/Edit Tags	
			Change Description	
			Create Flow Log	

a. Set the **Source/dest. check** to **Disabled**.

b. Click **Save**.

The source/destination check is now disabled for the network interface connected to the firewall instance.

Step 8. Associate the Elastic IP with the Firewall

Use the Elastic IP (EIP) as the public IP address for the firewall network interface connected to the public subnet.

- 1. Log into the AWS console.
- 2. Click Services and select EC2.
- 3. In the Network & Security section of the left menu, click on Network Interfaces.
- 4. (optional) Filter the list using the Instance ID.
- 5. Locate the network interface connected to the public subnet, and copy the **Network interface ID**.

Q search : i-fea22e7	6 🛛	Add filter				
Name	Ŧ	Network interface ID	Subnet ID	VPC ID	· Zone	Ŧ
ENI Private Subnet		eni-f3cb058a	subnet-6d06f109	vpc-0a84896f	eu-west-1c	
ENI Public Subnet		eni-25cd035c	subnet-6e06f10a	vpc-0a84896f	eu-west-1c	

- 6. In the Network & Security section of the left menu, click on Elastic IPs.
- 7. Right-click the EIP created in step 2, and click **Associate Address**.

Q search : eipalloc-9d2ab2f8 💿 Add filter					
Elastic IP Alloca	ation ID • Instance				
5 2.30.210.159 eipallo	C- Allocate New Address Release Addresses Associate Address Disassociate Address				

8. Enter the Network Interface ID, and click Associate.

Associate Address			×
Select the instance OR network interface to whi	ch you wish to associate this IP address (52.30	.210.159)	
Instance	Search instance ID or Name tag		
	Or		
Network Interface	eni-25cd035c		
Private IP Address	10.100.0.100* - 52.30.210.159	· (i)	
	Reassociation	(i)	
			Cancel Associate

Step 9. Adjust the Routing Tables

Adjust the routing table for the private subnets to use the firewall instance as the default gateway. Instances will always use the first IP address of the subnet as the default gateway. The AWS cloud fabric then internally reroutes the traffic to the configured network interface or instance. The route table attached to the public subnet does not need to be changed.

- 1. Log into the AWS console.
- 2. Click Services and select VPC
- 3. In the Virtual Private Cloud section of the left menu, click on Route Tables.
- 4. (optional) Filter the list using the VPC ID.
- 5. Select the route table that is not associated with the public subnet.

Create Route Table				
Qvpc-0a84896f	×			
Name	 Route Table ID 	 Explicitly Associat 	Main 👻	VPC -
	rtb-9da959f9	1 Subnet	No	vpc-0a84896f (10.100.0.0/16) DOC
	rtb-9ca959f8	0 Subnets	Yes	vpc-0a84896f (10.100.0.0/16) DOC

- 6. In the lower half of the page, click on the **Subnet Associations** tab.
- 7. Click **Edit**.

rtb-9ca959	f8 Priva	ate Route Table			
Summ	ary	Routes	Subnet Associations	Route Propagation	Tags
Edit					

Select the private subnet and click **Save**.

If you are deploying with multiple network interfaces, you must create a route table for each private network. If you are using

one network interface, associate all private subnets with this route table.

r	tb-9ca959f	8 Priva	ate Route Table					
	Summa	ry	Routes	Subnet Associati	ons	Rout	e Propagation	Tags
	Cancel	Save						
	Associate	Subne	et		CIDR		Current Route	Table
		subnet-6e06f10a (10.100.0.0/24) Public subnet			10.100	0.0.0/24	rtb-9da959f9 P	ublic Route Table
		subnet-	-6d06f109 (10.100.1	I.0/24) Private subnet	10.100	0.1.0/24	Main	

- 8. Click on the **Routes** tab.
- 9. Click **Edit**.

Summary Routes		Subnet Associations		Route Propagation	Tags	
Edit						
Destination	Target		Status	Propagated		
0.100.0.0/16	local		Active	No	1	
0.0.0/0	nat-0fdffb7	c193429667	Black Hole	No		

- 10. Depending on whether you are using single or multiple network interfaces:
 - a. Single NIC Enter the Instance ID of the firewall in the Target column of the route with the Destination 0.0.0.0/0.
 - b. Multiple NICs Enter the network interface ID of the network interface associated with this subnet in the Target

column of the route with the **Destination** 0.0.0.0/0.

11. Click Save:

You now have a default route with the **Status** active and the target set to the correct firewall network interface.

rtb-9ca959f8	Private Route Table				
Summary Routes		Subnet Associations		Route Propagation	Tags
Edit 📀	Save Successful				
Destination	Target	Status	Propagated		
10.100.0.0/16	local	Active	No		
0.0.0/0	eni-f3cb058a / i-fea22e76	Active	No		

Step 10. Create a Security Group

Create a security group for the private networks that allow all traffic from the security group assigned to the firewall.

- 1. Log into the AWS console.
- 2. Click Services and select VPC
- 3. In the Security section of the left menu, click on Security Groups.
- 4. Locate the security group created during the firewall deployment, and copy the Group ID.

Create Security Group	Delete Security	Group					C	•	0
Filter VPC security group	s 🕶 🔍	×				\ll < 1 to 1 of '	1 Secu	rity Gro	up > »
Name tag	Group ID -	Group Name	Ŧ	VPC	Ŧ	Description	Ŧ		
	sg-b8fffadc	DOC-NGF-Public Subnet Security Group		vpc-0a84896f (10.100.0.0/16))	This security group was generated	by A		

- 5. Click Create Security Group.
 - **Group name** Enter a name for the security group.
 - **Description** Enter a description for the security group.
 - VPC Select the VPC you created in step 3 from the list.

6. Click Yes, Create.

7. In the lower half of the page, click on the **Inbound Rules** tab.

8. Click Edit.

- 9. Create a rule to allow traffic from the firewall security group:
 - Type Select All Traffic.
 - Protocol Select ALL.
 - Source Enter the group ID of the security group assigned to your firewall.
- 10. Click Save.

Summary	Inbou	ind Rules	Outbound Rules	Tags		
Cancel Save						
Туре		Protocol		Port Range	Source	Remove
ALL Traffic	*	ALL	¥	ALL	sg-b8fffadc	0
Add another rule						

When deploying Instances to one of the private subnets, use this security group. This will allow traffic to and from the firewall.

Step 11. (optional) Edit the Network ACLs

The Network ACLs created by the VPC wizard are configured by default to allow traffic through. If required, go Network ACLs

to edit the network ACL assigned to your VPC.

Step 12. Log in via NextGen Admin

Use NextGen Admin to log into your firewall.

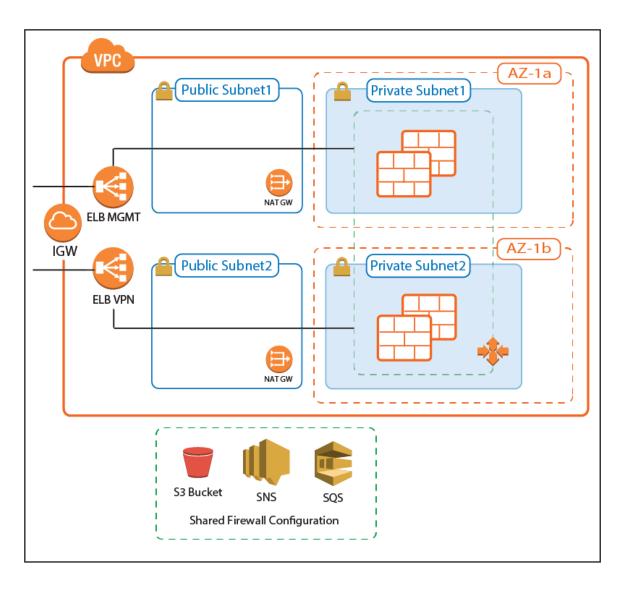
- 1. Launch NextGen Admin.
- 2. Log into the firewall:
 - Select Firewall.
 - IP Address / Name Enter the elastic IP.
 - Username Enter root.
 - **Password** Enter the Instance ID of the firewall instance created in step 5.
- 3. Click Sign in.

Barracuda	NextGen Fi	rewall
💽 Firewall 📿) Control Center 🛛 🔿 SSH	
IP Address / Name	12.36.210.758	
Username	root	
Password	•••••	
Add to Favorites	\checkmark	
	Sign in	

3.11.1 Next Steps

(BYOL only) License and activate the firewall. For more information, see How to Activate and License a Stand-alone Virtual or

Public Cloud F-Series Firewall or Control Center.


(optional) Re-enable SSH logins via password by setting Force Key Authentication to No in the Advanced View of the

CONFIGURATION > Configuration Tree > Box > Advanced Configuration > SSH > Advanced Setup page.

▲ Configuration	Protocol Version 2 Options		
Basic Setup	Allow Compression	yes	▼ ■·
Advanced Setup	I Force Key Authentication	no	▼ 1
▲ Configuration Mode	I Secure FTP Support	no	▼ □
Switch to Basic View			

3.12 How to Deploy a NextGen Firewall Auto Scaling Cluster in AWS

A NextGen Firewall Auto Scaling cluster automatically scales with demand, thereby creating a cost-effective, robust solution for securing and connecting to your cloud resources. The firewall cluster integrates tightly with AWS services and APIs. Configuration changes are synchronized securely over the AWS backend, with all instances sharing the same configuration. For the admin, the firewall cluster handles like a single NextGen Firewall. The firewall cluster uses the PAYG image of the Barracuda NextGen Firewall in the AWS Marketplace to allow you to quickly deploy without the need for long-term licensing commitments. NextGen Firewall clusters cannot be managed by a NextGen Control Center. The following custom metrics are collected from the firewall cluster:

3.12.1 AWS Reference Architectures

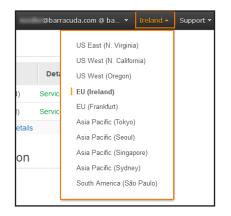
This article is used in the following AWS reference architectures:

- 2.2 NextGen Firewall Auto Scaling Cluster(page 29)
- 2.3 NextGen Firewall Cold Standby Cluster(page 49)

Before You Begin

Download the template from the Barracuda Network GitHub account:

https://github.com/barracudanetworks/ngf-aws-templates.


- NextGen Firewall Auto Scaling Cluster Download autoscale.json
- NextGen Firewall Cold Standby Cluster Download coldstandby.json
- Verify that the AMI image IDs used in the CloudFormation template match the IDs for the NextGen Firewall image listed

in the AWS Marketplace. The AMI disk images change for every released version and differ for each region.

1-Click Launch Manual Launch Service Catalog eriew, modify and launch With EC2 Console, APT or CLI Copy to SC and Launch							
Click "Accept Software Terms" to gain access to this Software							
Once you accept these terms, you will have access to this software in any supported region. You can then launch the AMIs listed below directly from the EC2 console, EC2 APIs, or with other AWS management tools.							
Software Prici	ng						
Version 7.0.2-094-20170509', released 05/27/2017							
▼ Launch	, (eeebbo 03y 21y 2017						
	, (etable: 0, 21) 2011						
➡ Launch	10						
✓ Launch AMI IDs	D	aunch with EC2 Console					
➡ Launch AMI IDs Region	iD ami-661csf09 L	aunch with EC2 Console					

Step 1. Select the AWS Datacenter

- 1. Log into the AWS console.
- 2. In the upper right, click the datacenter location, and select the datacenter you want to deploy to from the list.

The selected datacenter location is now displayed in the AWS console.

Step 2. Create an IAM Role for the Firewall

Create an IAM Role to allow the firewall instances to make the required API calls.

For more information, see 3.1 How to Create an IAM Role for an F-Series Firewall in AWS(page 79)

Step 3. Subscribe to Barracuda NextGen Firewall F-Series PAYG AMI in AWS Marketplace

To be able to deploy a NextGen Firewall PAYG image via the CloudFormation template, you must agree to the Terms of

Service and subscribe to the image in the AWS Marketplace. You need to do this only once per account,

Go to the AWS Marketplace: https://aws.amazon.com/marketplace/

Search for Barracuda NextGen Firewall.

Click the Barracuda NextGen Firewall F-Series PAYG or Barracuda NextGen Firewall F-Series BYOL image.

¹/aws mark	ketplace	Hello, mzoller@barracuda.com (Sign out)		n Web Services Home ell on AWS Marketplace		
Shop All Categories -	Barracuda NextGen Firewal		GO	Your Software		
Categories	Barracuda I	NextGen Firewall (2 results) showing 1 - 2				
All Categories Software Infrastructure (2	e) CBarracuda	Barracuda NextGen Firewall F-Serie				
Filters	Free Trial	Starting from \$0.60/hr or from \$4,599.00/yr (12% savings) for software + AWS usage fees				
Operating System All Linux/Unix Software Pricing Plane		The Barracuda NextGen Firewall F-Series for Amazon Web Services allows customers to effectively protect their server infrastructures in the cloud. The Barracuda NextGen Firewall (LinuxUnix, Other 2.6.38 - 64-bit Amazon Machine Image (AMI)				

Click Continue.

Barracuda	Barracuda NextGen Firewall F-Series - PAYG Sold by: Barracuda Networks, Inc.							
	protect firewall environ	their server infrastructures in the o that was purpose-built for efficient ments. Beyond its powerful networ	loud. The Barracuda Next deployment and operation k firewall, IPS, and VPN t	Series for Amazon Web Services allows customers to effectively Gen Firewall F-Series is an enterprise-grade next-generation within dispersed, highly dynamic, and security-critical network echnologies, the F-Series integrates an extensive set of cation control, availability, and traffic Read more				
Launch on EC Barracuda N		en Firewall F-Seri	es - PAYG					
1-Click Laun Review, modify and la		Manual Launch With EC2 Console, API or CLI		Price for your Selections:				
Click "Accept Software	Softwa	re Terms" to gain acces	s to this	Accept Software Terms				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	aunch the	rou will have access to this softwa AMIs listed below directly from th ement tools.	· · · · ·	You will be subscribed to this software and agree that your use of this software is subject to the pricing terms and the seller's End User License Agreement (EULA) and your use of AWS services is subject to the AWS customer Agreement.				

You will now receive an email from Amazon confirming your subscription. You can now use the provided AMI in your

CloudFormation templates.

~	Thank you for subscribing to Barracuda NextGen Firewall F-Series - PAYG
	Software and AWS hourly usage fees apply when the instance is running and will appear on your monthly bill.

158 How to Deploy a NextGen Firewall Auto Scaling Cluster in AWS

Step 4. Deploy the CloudFormation Template

CloudFormation templates can be deployed via the AWS web console, CLI, REST, or PowerShell.

- 1. Log into the AWS console.
- 2. Click Services and select CloudFormation.
- 3. Click Create Stack

Create Stack	Actions -	Design template
Filter: Active -	By Name:	

- 4. Select Upload a template to Amazon S3.
- 5. Click **Browse** and select the template file.

Choose a template	A template is a JSON/YAML-formatted text file that describes your stack's resources and their properties. Learn more.
	O Select a sample template
	×
	Upload a template to Amazon S3
	Browse autoscale.json
	○ Specify an Amazon S3 template URL

6. Click Next.

- 7. Enter the Stack name.
- 8. Fill in the template Parameters.
 - Stack Name Enter a name.
 - AMI Enter the ID for the Barracuda NextGen Firewall PAYG AMI for your AWS region.
 - BucketName Enter the name for the S3 bucket used to store the firewall configuration.
 - IAMProfile Enter the IAM role created for the NextGen Firewall.
 - InstanceType Enter a supported instance type. Default m4.large.
 - Key Select the key pair from the list. You must have access to the private key of the selected key pair to log in via SSH.

Specify Details		
Specify a stack name and para	ameter values. You can use or change the default	parameter values, which are defined in the AWS CloudFormation template. Learn more.
Stack name	DOC-ASG01	
Parameters		
AMI	ami-adb189cb	AMI ID
BucketName	doc-asgbucket	Name of the newly-created S3 bucket
IAMProfile	NextGenFirewallRole	Existing IAM Profile name
InstanceType	m4.large	EC2 instance type
Key	MZ_keys	

9. Click Next.

- 10. (optional) Enter **Tags** for your stack.
- 11. In the **Advanced** section, set additional options for your stack:
 - Notification options
 - Timeout Set the timeout in minutes.

Rollback on failure – When set to yes, the deployment will be rolled back if any errors are encountered.

- 12. Click Next.
- 13. Review the settings and click **Create**.

The resources defined in the template are now deployed. This may take a couple of minutes. When the Status column shows

CREATE_COMPLETE, the template has been deployed successfully. If the firewall fetches a PAR file from a Control Center, it

may take a couple of minutes for the firewall to be available.

Cre	eate Stack 🔹 Actions 🕶	Design template		
Filt	er. Active - By Stack Name	2		
	Stack Name	Created Time	Status	Description
	DOC-ASG01	2017-05-26 16:23:49 UTC+0200	CREATE_IN_PROGRESS	

Step 5. Configure Log Streaming to AWS CloudWatch

Log files are generated and stored on each firewall instance in the Auto Scaling Group. To aggregate and store the log files

generated on the firewall cluster, configure the NextGen Firewall cluster to stream all logs to AWS CloudWatch.

CloudWatch		Clou	dWatch > Log Groups	> DOC-ASG1 > i-0ec405be8a5c5b762							
Dashboards						~					
Alarms	•			Expar	nd all	۲	Row	🔿 Те	xt	• •	0
ALARM	0										
INSUFFICIENT	13	F	ilter events		all	30s	5m	1h 6h	1d 1	w custom	•
ок	0		Time (UTC +02:00)	Message							
Billing			. ,	mcoouge							
Events			2017-05-22								
		•	15:16:04	2017-05-22T13:16:03+00:00 127.0.0.1 srv_S1_VPN(·):[user]:err - TCP 192.168.254.231:50492: peek fa							^
Rules			15:16:04	2017-05-22T13:16:03+00:00 127.0.0.1 srv_S1_VPN(-):[user]:notice - Session TCP slot number 3560 to	ermina	ited ->	abort	associa	ed sess	ion	
Logs			15:16:07	2017-05-22T13:16:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:info - TCP start 192.168.253.248:32106:	org=3	192.1	68.253	248:32	06 -> 1	27.0.0.9:691	
			15:16:07	2017-05-22T13:16:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:info - TCP Accept on 127.0.0.9:691 from	192.16	58.253	3.248:3	2106 slo	t 1678	timeout 20	
Metrics			15:16:07	2017-05-22T13:16:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:err - TCP 192.168.253.248:32106: peek fa	ailed (S	Succe	ss). clo	sing co	nnectio	n(fd=10)	
			15:16:07	2017-05-22T13:16:07+00:00 127.0.0.1 srv_S1_VPN(-):[user]:notice - Session TCP slot number 1678 to	ermina	ited ->	abort	associa	ed sess	ion	

For more information, see 3.2 How to Configure Log Streaming to AWS CloudWatch(page 87)

3.13 How to Configure Scaling Policies for a NextGen Firewall Auto Scaling Cluster

Scaling policies are required for the firewall cluster to adjust the capacity in response to changes in demand. Define CloudWatch alarms for the high and low thresholds. Use the custom metrics collected from the firewall cluster or the default EC2 system metrics. Add scaling policies to the Auto Scaling group that trigger a scaling action when the health check is in alarm state.

Step 1. Create CloudWatch Alarm

Create two CloudWatch alarms, one for the high and one for the low alarm threshold.

- 1. Log into the AWS console.
- 2. Click Services and select CloudWatch.
- 3. In the left menu, click Alarms.
- 4. Click Create Alarm.

CloudWatch		Create Alarm	Add to Dashboard	Actions 🗸
Dashboards Alarms	•	Filter: All alarm	is ¥	Q Search Alarms
ALARM	0	State		• Name

5. From the Browse Metrics drop-down list, select Barracuda/NGF.

Create Alarm				×
1. Select Metric	2. Define Alarm			
Browse Metrics	- Q Search Metric	is X		
All Metrics	h Metrics b	y Category		
EBS	etric summary has lo	aded. Total metrics: 14,720		
EC2 FLB	etrics: 73	EBS Metrics: 6,014	EC2 Metrics: 5,068	
Logs S3 SNS SQS VPN	3	Per-Volume Metrics : 6,014	Per-Instance Metrics : 4,491 By Auto Scaling Group: 374 By Image (AMI) Id : 147 Aggregated by Instance Type : 49 Across All Instances : 7	
Barracuda/NGF	7	Logs Metrics: 14	S3 Metrics: 67	
Browse Metrics Per LB, per AZ	8 Metrics: 141	Account Metrics : 2 Log Group Metrics : 12	Storage Metrics: 67	
By Availability Z Across All LBs : By Namespace By Service : 8	8			

- 6. From the Filter Results drop-down list, select AutoScalingGroupName.
- 7. Select the check box for the metric.

Barracuda/NGF 👻 🔍 DOC	×		🛛 🔍 🕺 1 to 50 of 173 metrics 📏	>
ilter Results: AutoScalingGroupName 🗠				
Barracuda/NGF > AutoScalingGroupName				-
AutoScalingGroupName	v	Metric Name		Ŧ
DOC-ASG-ASG-1LK0A6X0AKTTC		Blocked Connections		
DOC-ASG-ASG-1LK0A6X0AKTTC		Bytes		
DOC-ASG-ASG-1LK0A6X0AKTTC		Bytes in		
DOC-ASG-ASG-1LK0A6X0AKTTC		Bytes out		
DOC-ASG-ASG-1LK0A6X0AKTTC		Bytes total		

8. Click Next.

9. Enter a **Name**.

- 10. Configure the **Alarm Threshold**:
 - Logic operator Select >= when defining an alarm to scale out, <= when defining and alarm to scale in.
 - Alarm threshold Depending on the instance and metric type, enter the threshold. If unsure, use CloudWatch to

monitor your cluster under load to determine the correct value to match your workload.

• Period – Enter the time period the threshold must be exceeded for alarm to be triggered.

Alarm Th	Alarm Threshold				
Provide the deta appropriate thre	ails and threshold for your alarm. Use the graph on the right to help set the shold.				
Name: Description:	DOC-NGFScaleOutAlarm				
Whenever. is: for.					

11. In the Alarms section, click delete to not receive a notification when the alarm is triggered. Alternatively, select an

SNS topic that is configured to send notification emails when the alarm is triggered.

efine what actions are ta	aken when your alarm cha	inges state.	
Notification			Delete
Whenever this alarm:	State is ALARM	~	
Send notification to:	NGFAutoScalingEvent		✓ New list Enter list ❶
	This notification list is r	managed in the	SNS console.

12. From the **Period** drop-down list, select the number of minutes.

13. From the Statistics drop-down list, select Average or Sum depending on the metric.

efine what actions are t	aken when your alarm ch	anges state.	
Notification			Delete
Whenever this alarm:	State is ALARM	~	
Send notification to:	NGFAutoScalingEvent		New list Enter list 🟮
	This notification list is	managed in the	e SNS console.

14. Click Create Alarm.

The alarm is in the **INSUFFICIENT** state until there is enough data for the alarm. As soon as enough data is available, the alarm

state changes to **OK** or **Alarm**.

CloudWatch Dashboards		Create Alarm Add to Dashbo	Actions 👻		0 \$ G
Alarms	•	Filter: All alarms 👻	(Q Search Alarms X)		< < 1 to 13 of 13 alarms > >>
ALABM		State	 Name 	 Threshold 	 Config Status
INSUFFICIENT	13	INSUFFICIENT_DATA	DOC-NGFScaleOutAlarm	C2S tunnels >= 350 for 2 minutes	No actions
OK					

Step 2. Add Scaling Policy to Scale Out

- 1. Log into the AWS console.
- 2. Click Services and select EC2.
- 3. In the left menu, click Auto Scaling Groups.
- 4. Select the NextGen Firewall Auto Scaling group.
- 5. In the lower half, click the Scaling Policies tab.
- 6. Click Add policy.

,	Auto Scaling Group: DOC-COLD1-ASG-1T3Y5GB0JL0ND										
	Details	Activity History	Scaling Policies	Instances	Monitoring	Notifications	Tags	Scheduled Actions			
Add policy											

- 7. Enter a Name.
- 8. From the **Execute policy when** drop-down list, select the matching CloudWatch alarm created in Step 1.
- 9. Configure the action:
 - Action Select add to scale out, or Remove to scale in. Click set to use an explicit number of instances.
 - Number of instances Depending on the action, enter the number of instances to scale (add / remove) or the

number of instances to scale to (set).

10. (optional) Click **add steps** to define a more granular scaling policy that takes into account by how much the threshold

is exceeded.

11. In the **Instances need** text box, enter the number of seconds to wait before the next scaling action.

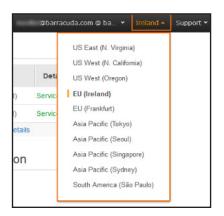
for the metric dimensions AutoScalingGroupName = DOC-ASG-ASG-1LK0A6X0AKTTC Take the action: Add 1 instances when 350 <= C2S tunnels < 400 Add 2 instances when 400 <= C2S tunnels < 500 3 Add 3 instances when 500 <= C2S tunnels < +infinity 3 Add step 1	Name:	ScaleOutScalingPolicy
for the metric dimensions AutoScalingGroupName = DOC-ASG-ASG-1LK0A6X0AKTTC Take the action: Add 1 instances when 350 <= C2S tunnels < 400 Add 2 instances when 400 <= C2S tunnels < 500 3 Add 3 instances when 500 <= C2S tunnels < +infinity 3 Add step 1	Execute policy when:	DOC-NGFScaleOutAlarm V Create new alarm
Instances needs as accords to warm up offer each stop	Take the action:	Add 1 instances when 350 <= C2S tunnels < 400 Add 2 instances when 400 <= C2S tunnels < 500 Souther and the second se
instances need. 600 seconds to warm up after each step	Instances need:	600 seconds to warm up after each step

12. Click Create.

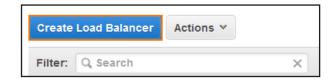
Repeat this for both Scale In and Scale Out policies. Use CloudWatch dashboard widgets to visualize the alarm thresholds.

3.14 How to Configure an AWS Elastic Load Balancer for F-Series Firewalls in AWS

The Elastic Load Balancer is a manged layer 4 load balancer by AWS. The ELB can be deployed as a public-facing load balancer or internally in your VPC. Instances are added either manually or, if associated with an Auto Scaling group, automatically. The load balancer continuously checks the health of the instances and takes unhealthy instances out of rotation. By enabling cross-zone loadbalancing, the load balancer spreads out the load evenly over multiple availability zones.


3.14.1 AWS Reference Architectures

This article is used in the following AWS reference architectures:


2.1 NextGen Firewall High Availability Cluster with Route Shifting(page 21)

3.14.2 Create an AWS Load Balancer

- 1. Log into the AWS console.
- 2. In the upper right, click on the datacenter location, and select the datacenter you want to deploy to from the list.

- 3. Log into the AWS console.
- 4. Click **Services** and select **EC2**.
- 5. In the **Load Balancing** section of the left menu, click **Load Balancer**.
- 6. Click Create Load Balancer.

7. Select Classic Load Balancer and click Continue.

○ Application Load Balancer	Classic Load Balancer
An Application Load Balancer makes routing decisions at the application layer (HTTP/HTTPS), supports path-based routing, and can route requests to one or more ports on each EC2 instance or container instance in your VPC.	A Classic Load Balancer makes routing decisions at either the transport layer (TCP/SSL) or the application layer (HTTP/HTTPS), and supports either EC2-Classic or a VPC.
	Cancel Continue

- 8. Enter the Basic Configuration Settings:
 - Load Balancer name Enter name for the load balancer.
 - Create LB inside Select the VPC the firewalls are deployed to from the list.
 - Create an internal load balancer Select the check box to create an internal load balancer. Internal load balancers

are reachable from within the VPC and do not have a public IP address.

Load Balancer name:	Firewall-Load-Balancer
Create LB Inside:	vpc-0a84896f (10.100.0.0/16) DOC-VPC ~
Create an internal load balancer:	(what's this?)
Enable advanced VPC configuration:	

9. For each **Listener**, click **Add** and enter:

- Load Balancer Protocol Select the protocol from the list. Supported protocols: TCP, HTTP, HTTPS, SSL (Secure TCP).
- Load Balancer Port Enter the external port.
- Instance Protocol Enter the protocol. In most cases, this is the same protocol as the Load Balancer Protocol. To offload SSL encryption to the ELB, different protocols can be selected (e.g, HTTPS to HTTP).
- **Instance Port** Enter the port number of the service on the instance.

Listener Config	juration:			
Load Balancer Protocol	Load Balancer Port	Instance Protocol	Instance Port	
TCP ~	691	TCP ~	691	8
HTTPS (Secure HTTP) ~	443	HTTP ~	443	8
Add				

10. Click + in the Actions column to add subnets to the load balancer. Add the subnets containing the firewall instances.

Each subnet should be in a different Availability Zone.

Actions Availability Zone Subnet ID Image: Constraint of the state o		Name DOC Public Subnet #2
	10.100.10.0/24	DOC Public Subnet #2
A subset_1c subset_6d06f109		
	10.100.1.0/24	DOC- Private subnet #1
Selected subnets		
Actions Availability Zone Subnet ID	Subnet CIDR	Name
eu-west-1c subnet-6e06f10a	10.100.0.0/24	DOC Public subnet

11. Click Next: Assign Security Groups.

12. Click Create new security group.

- 13. For each load balancer listener, create a Rule. Click Add Rule for each additional security group rule required.
 - Type Select the protocol or type of traffic. e.g., Custom TCP Rule for TCP, or HTTPS for SSL-encrypted web traffic.
 - Port Range Enter the port. e.g., 691 for TINA VPN
 - Source Select the source of the traffic. For Internet traffic, select Anywhere and enter 0.0.0/0.

Assign a security group:	 Create a new se Select an existin 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Security group name:	NGF-ELB-SG					
Description:	Security group for	the firewall elastic load	balancer			
Type (i)	Protocol (i)	Port Range (i)	Source	(j)		
Custom TCP Rule ~	TCP	691	Anywhe	re ~ 0.0.0.0/0)	⊗
HTTPS ~	TCP	443	Anywhe	re ~ 0.0.0.0/0)	\otimes
Add Rule						
			Cancel	Previous	Next: Configure Security Setti	ngs

14. Configure the Health Check.

- **Ping Protocol** Select the protocol from the list.
- Ping Port Enter the port. e.g, 691 for TINA VPN, or 443 for HTTPS
- **Response Timeout** Enter the number of seconds the probe waits for an answer.
- Interval Enter the number of seconds between two probes.
- Unhealthy threshold Enter the number of failed heath checks for the instance to be considered unhealthy.

Unhealthy health checks are taken out of rotation until healthy again.

• Healthy threshold – Enter the the number of successful heath checks for the instance to be considered healthy.

Ping Protocol Ping Port	TCP ~ 691
Advanced Details	
Response Timeout (j)	5 seconds
Interval (j	30 seconds
Unhealthy threshold (j)	2 ~
Healthy threshold (j)	10 ~

15. Click Next: Add EC2 Instances.

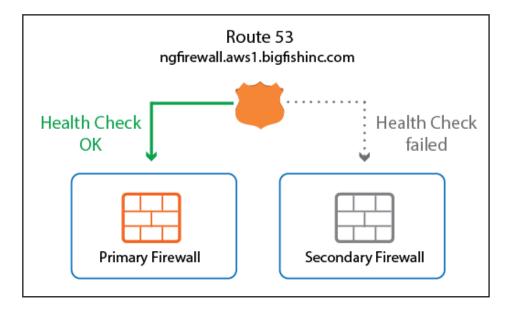
- 16. (optional) If the firewall EC2 instances are already deployed, select the EC2 instances.
- 17. Select Enable Cross-Zone Load Balancing.

Availability Zone Distribution		
Enable Cross-Zone Load Balancing	()	
Enable Connection Draining	(j)	300 seconds

18. Click Next: Add Tags.

- 19. (optional) Add Key / Value tags to the resource. Click Create Tag to add additional tags.
- 20. Click Review and Create.

▼ Define Load Balancer	Edit load balancer definition
Load Balancer name: Firewall-Load-Balancer Scheme: internet-facing Port Configuration: 691 (TCP) forwarding to 691 (TCP)	
 Configure Health Check 	Edit health check
Add EC2 Instances	Edit instances
VPC Information	Edit subnets
 Security groups 	Edit security groups
	Cancel Previous Create


21. Review the settings and click **Create**.

The Elastic Load Balancer is now deployed and ready for use.

Filter: Q Firewall-Load-Balancer			r ×									
		Name	Ŧ	DNS name	Ŧ	Stater	VPC ID	-	Availability Zones	-	Туре	Ŧ
		Firewall-Load-Balancer		Firewall-Load-Balancer-2	279		vpc-0a848	96f	eu-west-1c, eu-west-1a		classic	Γ

3.15 How to Configure Route 53 for F-Series Firewalls in AWS

If you are running multiple stacks in different AWS regions, or multiple deployments in a single region, you must configure AWS Route 53 to access your services behind the NextGen Firewalls. Also use Route 53 if you are using UDP-based services since the Elastic Load Balancer supports only TCP connections. To always route traffic to the active firewall in the HA cluster, define two record sets with a failover policy. The record set for the first firewall is combined with a health check. As long as the health check is valid, the DNS name for the firewall is resolved to the primary firewall. When the virtual server fails over to the secondary firewall, the health check for the primary firewall fails, and after the TTL of the DNS record has expired, the DNS name for the firewall cluster resolves to the IP address in the secondary record set. When the primary firewall is active again, the health check will again show a healthy state and the DNS record will point to the IP address of the primary firewall.

3.15.1 Alternative

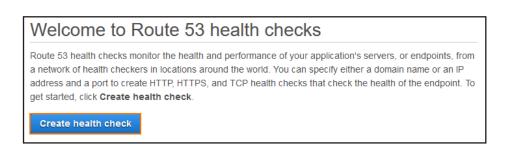
If you are not using Elastic IP addresses for your firewalls, you can also use the DNS name of the firewall for the health check and create a CNAME DNS record.

3.15.2 Before You Begin

• Set up a domain or subdomain in Route 53 and create a public hosted zone.

Deploy a multi-AZ high availability cluster. For more information, see How to Configure a Multi-AZ High Availability Cluster in

AWS using the Web Portal.


Look up the DNS names, and public or Elastic IP address for the primary and secondary firewalls.

Step 1. Create a Route 53 Heath Check for the Primary Firewall

Configure the health check for a service running on the virtual server, such as the VPN service. Do not create a check for box-

level services because these services will not fail over to the secondary firewall.

- 1. Log into the AWS console.
- 2. Click Services and select Route 53.
- 3. In the left menu, click Health checks.
- 4. Click Create health check.

- 5. Enter a Name.
- 6. From the What to monitor list select Endpoint.

Configure health check		0		
Route 53 health checks let you track the health status of your resources, such as web servers or mail servers, and take action when an outage occurs.				
Name	NGF-Healthcheck			
What to monitor	Endpoint Status of other health checks (calculated health check)			
	State of CloudWatch alarm			

- 7. Configure the service to be monitored:
 - Specify and endpoint by Select IP address.
 - **Protocol** Select **TCP**.
 - IP address Enter the public IP address for the primary firewall.
 - Port Enter 691 to monitor the VPN service. The VPN service must be running on your virtual server. Alternatively,

you can also select another port on your firewall.

Monitor an endpoint				
Multiple Route 53 health checkers will try to establish a TCP connection with the following resource to determine whether it's healthy. Learn more				
Specify endpoint by	IP address D	omain name		
Protocol	ТСР	- 0		
IP address *	52.209.222.128	0		
Port *	691	÷ 0		

8. (optional) Expand the Advanced configuration section and adjust the following settings to improve failover times:

- Request interval Select Fast (10 seconds).
- Failure threshold Select 2.

 Advanced configuration 					
Request interval	Standard (30 seconds)	Fast (10 seconds) ()			
Failure threshold *	2	ð			
Latency graphs	0				
Invert health check status	0				

9. Click Next.

10. (optional) Set Create alarm to yes and select an Existing SNS topic or create a New SNS topic to receive a

notification.

Get notified when health che	ck fails	0			
If you want CloudWatch to send you an Amazon SNS notification, such as an email, when the status of the health check changes to unhealthy, create an alarm and specify where to send notifications.					
Create alarm Yes No () CloudWatch sends you an Amazon SNS notification whenever the status of this health check is unhealthy for one minute. Send notification to Existing SNS topic New SNS topic ()					
	DOC-SNS-HA-ALARM (mzoller@barracuda.com)				

11. Click Create health check.

The health check is now active. Depending on the request interval and failover threshold, the Status of the health check

changes from Unknown to Healthy.

Creat	te health check	Delete health ch	neck	Edit health check				C 0
T	Filter by keyword					~ ~	< 1 to 1 of 1	health check $> \gg$
	Name	~	Statu	IS		Description	~	Alarms
	NGF-Healthcheck		16 mini	Health	у	tcp://52.209.222.128:691/		오 1 of 1 in OK

Step 2. Create a Failover Record Set for the Primary Firewall

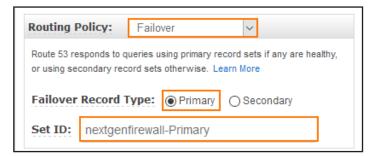
Create the DNS record for the primary firewall. Use a failover routing policy and add the health check you just created as a

condition.

- 1. Log into the AWS console.
- 2. Click Services and select Route 53.
- 3. In the left menu, click **Hosted zones**.
- 4. Select your Domain Name and click Go to Record Sets.

Create Hosted Zone	Go to Record Sets Delete Hosted Zo	one
QSearch all fields	X All Types	I ≤ S Displaying 1 to 4 out of 4 Hosted Zones > >
Domain Name	✓ Type ✓ Record Set Count ✓ Comment	Hosted Zone ID 🗸 👻
aws1.bigfishinc.org.	Public 2 Information	Development Z95HZYYBNAAHN

5. Click Create Record Set.



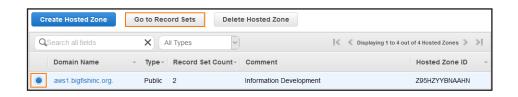
6. In the right column, create the record set:

- Name Enter the DNS name.
- Type Select A IPv4 address.
- Alias Select No.
- TTL (Seconds) Set the number of seconds the DNS records can be cached by non-authoritative DNS servers.
- Value Enter the EIP or public IP address for the primary firewall.

Create Record Set								
Name:	nextgenfirewall .aws1.bigfishinc.org.							
Type:	A – IPv4 address 🗸							
Alias: ()Yes ON0							
TTL (Se	econds): 20 1m 5m 1h 1d							
Value:	52.209.222.128							
	IPv4 address. Enter multiple addresses on separate lines.							
	Example:							
	192.0.2.235 198.51.100.234							

- 7. In the right column, configure the **Routing Policy**:
 - Routing Policy Select Failover.
 - Failover Record Type Select Primary.
 - Set ID Enter a unique ID to differentiate from other failover record sets using the same name and type.

- 8. In the right column, configure the Health Check:
 - Associate with Heath Check Select yes.
 - Health Check to Associate Select the health check created in step 1.


9. Click Create.

The record set for the primary firewall is now listed with the other DNS records of this hosted zone.

Step 3. Create a Failover Record Set for the Secondary Firewall

Create the DNS record for the secondary firewall. Use a **failover** routing policy.

- 1. Log into the AWS console.
- 2. Click Services and select Route 53.
- 3. In the left menu, click Hosted zones.
- 4. Select your Domain Name and click Go to Record Sets.

5. Click Create Record Set.

Back to Hosted Zones	Create Record Set
QRecord Set Name	X Any Type ~

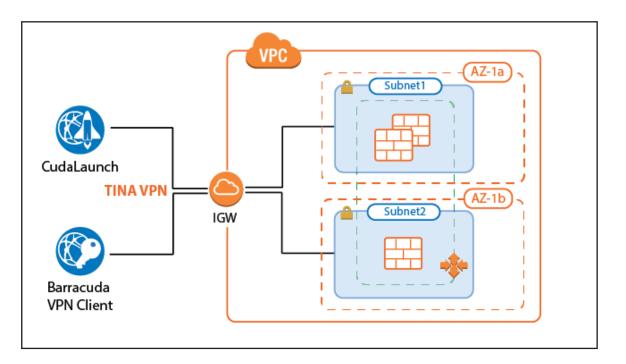
6. In the right column, create the record set:

- Name Enter the DNS name you used for the primary firewall.
- Type Select A IPv4 address.
- Alias Select No.
- TTL (Seconds) Set the number of seconds the DNS records can be cached by non-authoritative DNS servers.
- Value Enter the EIP or public IP address for the secondary firewall.

Create Record Set								
Name:	nextgenfirewall .aws1.bigfishinc.org.							
Type:	A – IPv4 address 🗸							
Alias: (Yes ON0							
TTL (S	econds): 20 1m 5m 1h 1d							
Value:	52.210.190.53							
	IPv4 address. Enter multiple addresses							
on separate lines.								
	Example:							
	192.0.2.235							
	198.51.100.234							

- 7. In the right column, configure the **Routing Policy**:
 - Routing Policy Select Failover.
 - Failover Record Type Select Secondary.
 - Set ID Enter a unique ID to differentiate from other failover record sets using the same name and type.

Routing F	Policy: Failover ~				
Route 53 responds to queries using primary record sets if any are healthy, or using secondary record sets otherwise. Learn More					
Fallovel	Record Type: O Primary Secondary				
Set ID:	nextgenfirewall-Secondary				


- 8. In the right column, configure the **Health Check**:
 - Associate with Health Check Select No.
- 9. Click Create.

Both record sets for the primary and secondary firewalls are now listed in the hosted zone.

Q	Record Set Name	A	~ Alia	ses Only Weighted	Only 🛛 🗐 🐇 🐇 Displaying 1 to 2 o	ut of 2 Reco	rd Sets 📎	>!
	Name	▲ Туре -	Value ~	Evaluate Target Health -	Health Check ID	• TTL •	Region	We
	nextgenfirewall.aws1.bigfishinc.org	A	52.209.222.128	-	a644b5f8-9a39-409e-b704-305b5480ce8	a 20		
	nextgenfirewall.aws1.bigfishinc.org	A	52.210.190.53	-	-	20		

3.16 How to Configure a Client-to-Site VPN Group Policy for a NextGen Firewall Auto Scaling Cluster in AWS

Create a client-to-site group policy for remote users connecting to your network in a NextGen Firewall Auto Scaling Cluster in AWS. Configure a VPN client network, create the policy, and configure the network settings for the client-to-site connections. Then, create a Source NAT access rule to allow the clients to connect to your network. VPN clients can be authenticated either through external authentication schemes, client certificates, or a combination thereof.

3.16.1 Supported Clients

- Barracuda VPN Client for Windows, macOS, Linux, and OpenBSD
- CudaLaunch for Windows, macOS, and Android. A CudaLaunch version for iOS with support for NextGen Firewall clusters

is coming soon.

3.16.2 Before You Begin

Set up the VPN certificates for External CA or Barracuda VPN CA. For more information, see How to Set Up External CA VPN

Certificates, or How to Set Up Barracuda VPN CA VPN Certificates.

Configure an authentication scheme. For more information, see Authentication.

Step 1. Disable Port 443 for Client-to-Site VPN

To use SSL VPN and client-to-site VPN simultaneously, the listener on port 443 for the VPN service must be disabled.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN > VPN Settings.

- 2. Click Lock.
- 3. Select Click here for Server Settings. The Server Settings window opens.
- 4. In the Server Configuration section, set Use port 443 to No.

Server Sett	tings	×	
General	Advanced		
Acces	s Control Service		
IP Ad	Idress		
Sync	Authentication to Trustzone		
Server (Configuration		
Use po	rt 443	No	
CRL Poll Time (min) 0			
Global	TOS Copy	Off	

- 5. Click OK.
- 6. Click Send Changes and Activate.

Step 2. Configure the VPN Client Network

Configure the client network. When the VPN clients connect, they are assigned an IP address out of this network. Make sure to size the client-to-site network according to the number of client-to-site connections you are expecting to use on one instance of your Auto Scaling cluster. The source IP address for all connections from the VPN client network are rewritten to

use the firewall's IP address.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN > VPN Settings .

- 2. Click **Lock**.
- 3. Click the **Client Networks** tab.
- 4. Right-click the table, and select New Client Network.
- 5. In the **Client Network** window, configure the following settings:
 - Name Enter a descriptive name for the network.
 - Network Address Enter the default network address, e.g.: 172.16.0.0
 - Network Mask Specify the appropriate subnet mask, e.g.: 23
 - Gateway Enter the gateway network address, e.g.: 172.16.0.1

• Type – Select routed (Static Route). A static route on the NextGen Firewall routes traffic between the VPN client

subnet and the local network.

Network			_
	Advertise Route		
Name	C2SNetwork		
Network Address	172.16.0.0		
Network Mask	23 24 = 255.255.255.0		
Gateway	172.16.0.1		
Туре	routed (Static Route)	\sim	

- 6. Click **OK**.
- 7. Click Send Changes and Activate.

Step 3. Configure Group Policy Settings

Configure the authentication setting for the client-to-site VPN. The firewall must have access to the authentication service.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN > Client-to-Site.

- 2. Click Lock.
- 3. Click the External CA tab and then the Group Policy tab.
- 4. Click the Click here for options link.
- 5. In the Server section of the Group VPN Settings window, select the Authentication Scheme. e.g., msad
- 6. Configure which certificates are used. By selecting a specific certificate, all VPN group policies must use this certificate:
 - (optional) Server Select a server certificate, or use the default server certificate configured in the VPN settings.
 - Server Protocol Key Select the service certificate.
 - (optional) Used Root Certificates Select a root certificate, or use the default server certificate configured in the

VPN settings.

- (optional) X509 Login Extraction Field Select the X509 field containing the user name.
- 7. (optional) If needed, select the Preauthentication Scheme.

hange Group VPN Settings X509 Client Security Mandatory Client Credentials	X509 Certificate	
Mandatory Client Credentials		
	IPSec needs Xauth	
Certificate Login Matching	Login must match AltName in	n Certificate
Server		
Authentication Scheme	msad ~] :d
Server	-Use-Default- 🗸	
Server Protocol Key	ServiceCert 🗸	
Used Root Certificates	-Use-All-Known- 🗸	
X509 Login Extraction Field	CN (Common Name) V]
LDAP or Radius Attributes		
IP Attribute Name		virtual Client-IP from LDAP/Radius
VPN Group Attribute		
Preauthentication		
Preauthentication Scheme	-NONE-	Details
	OK Cancel	

8. Click **OK**.

Only X.509 certificate conditions can be assigned because IPsec XAUTH authentication will not work if group patterns are

defined in the External Group Condition section.

Step 4. Create a VPN Group Policy

Create a group policy and configure the network settings for the client-to-site connections. If you want the client to send all traffic through the VPN tunnel, enter 0.0.0/0 as the network.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN > Client-to-Site.

- 2. Click the External CA tab and then click the Group Policy tab.
- 3. Right-click the table and select **New Group Policy**.
- 4. In the Edit Group Policy window, edit the following settings:
 - Name Enter a name for this policy.
 - **Common Settings** Select the check box.
 - Statistics Name To better allocate statistics entries, enter a name.
 - **Network** Select the required client network.

- **DNS** Enter a DNS server for the clients.
- Network Routes Add all networks that should be reachable by the VPN clients. Enter 0.0.0/0 for all traffic to be sent through the client-to-site VPN.
- 5. Right-click the Group Policy Condition field and select New Rule.
- 6. In the X509 Certificate Conditions section of the Group Policy Condition window, set filters for the certificate. For

example, to let everyone with a valid certificate log on, click Edit/Show to add the following condition to the Subject

field: CN=*

Certificate condition entries are case insensitive and can contain the quantification patterns ? (zero or one) and * (zero or more).

			racuda IPsec IKE		C2Network	Daliau	
Common Setting	gs C2NetworkPolicy 🔽 🗹	_					
Statistic Name	AWS Auto Scale VPN Policy		Enforce Windo VPN Client Net	ws Security Setti work	ngs (Vista and ı	newer o	^
letwork	C2SNetwork 172.16.0.0 ~		DNS Suffix for VP				
NS	10.0.10.110		ENA	No			
/INS			Always On	Na	1		
etwork Boutes			Firewall Rules VPN Client NAC	lor	iore		
etwork Houtes	Network Routes		VPN	igi	lore		
	0.0.0.0/0		Offline				
			Firewall Always Of	N Na	1		
		Ξ	Login Message				
			Message				
Access Control List (ACL)	Access Control List		Bitmap				~
Group Policy C	ondition						
External Group *	Client Phion , IPSec , Tr. Agent		<509 Subject emailAddress=.e	Cert Policy / OID / =	Peer		

- 7. Click OK.
- 8. Click OK.
- 9. Click Send Changes and Activate.

Step 5. (optional) Adjust Barracuda (TINA) Settings

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN-Service > Client-to-Site.

- 2. Click **Lock**.
- 3. Click the **External CA** tab and then click the **Group Policy** tab.
- 4. Double-click the VPN group policy created in step 3.
- 5. In the **Barracuda** tab configure:

Barracuda Campus

- Windows Security Settings
- VPN Client Network
- Firewall Rules
- Login Message
- Ciphers
- 6. Click **OK**.
- 7. Click Send Changes and Activate.

Step 6. Add Access Rules

For each service and/or destination network, create an access rule to allow traffic from the client VPN network to your AWS

resources. The access rules must always use a Dynamic NAT or Translated IP from DHCP connection method.

- Action Select Pass.
- Source Select Any.
- Service Select the allowed services, or Any to allow all services.
- Destination Select the network object containing the networks the VPN clients can access in AWS.
- Connection Method Select Dynamic NAT.

Pass	~	IENTS-2-LAN s unrestricted access for VPN	clients coming) in through interface pvpr	n0 to the
Bi-Directiona	I	💍 🗌 Dynamic Rule		🕘 🗌 Deactivate Rule	
Source		Service		Destination	
Any Any	~	Any	~	Peered VPCs	
0.0.0/0		Ref: Any-TCP		10.100.1.0/24	
		Ref: Any-UDP			
		Ref: ICMP			
		ALLIP			
Authenticated Us	er	Policies		Connection Method	
Any	~	IPS Policy		Dynamic NAT	
		Default Policy	\sim	Dynamic NAT	
		Application Policy		D ynamie feri	
		No AppControl			
		Schedule			
		Always	~		
		QoS Band (Fwd)			
		Business (ID 3)	\sim		
		QoS Band (Reply) Like-Fwd	\sim		

3.16.3 Configure a Custom Login Message

When using a Barracuda VPN client, you can define a custom welcome messages as well as upload your company logo as a

custom Picture. Custom message and pictures can be selected in the Barracuda - Settings of the VPN group policy.

- Messages Create a custom message in the Message tab of the Client-to-Site page and then select the customized
 welcome message in the Barracuda Settings tab of the VPN group policies.
- Bitmap/Pictures Upload a 150x80 pixel, 256 color BMP bitmap in the Pictures tab of the Client-to-Site page and

then select the custom bitmap in the Barracuda Settings tab of the VPN group policies.

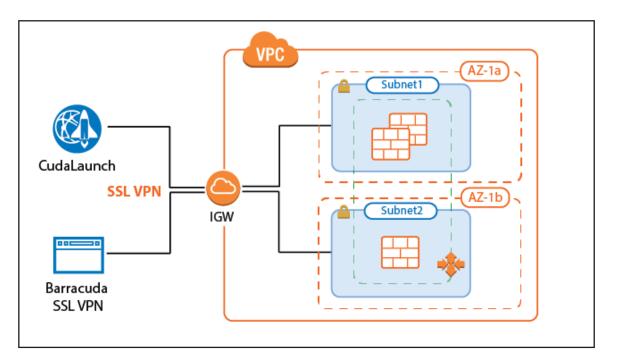
	Firewall Always ON	No	
		INU	~
	Message	CustomMessage	
	Bitmap	testpicture	
Ξ	Ciphers		
	AES256	Yes	
	AES	Yes	
	CAST	Yes	
	Blowfish	Yes	
	3DES	Yes	
	DES	No	
	Null	No	
Ξ	Advanced		~

3.16.4 Troubleshooting

NextGen Admin only displays the logs on one firewall instance. To troubleshoot multiple client-to-site connections in an AWS

Auto Scaling cluster, use CloudWatch.

For more information, see 3.2 How to Configure Log Streaming to AWS CloudWatch(page 87)


3.16.5 Next Steps

Configure the remote access clients to connect to the client-to-site VPN. For more information, see Remote Access Clients.

Configure SSL VPN and CudaLaunch. For more information, see SSL VPN and F-Series Firewall Configuration for CudaLaunch.

3.17 How to Configure the SSL VPN Services for AWS Auto Scaling Clusters

Let your users connect to a network in an AWS Auto Scaling cluster using SSL VPN. Enable the SSL VPN service and CudaLaunch, create a group access policy, and configure the login and authentication settings for the SSL VPN connections. To use SSL VPN, you must upload a certificate to the AWS certificate manager. For CudaLaunch on iOS, NextGen Firewall Auto Scaling Clusters are supported for CudaLaunch 2.3.0 or higher.

3.17.1 Before You Begin

Configure an external authentication server or NGF local authentication. For more information, see Authentication.

Step 1. Disable Port 443 for Site-to-Site and Client-to-Site VPN

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN > VPN Settings.

- 2. Click **Lock**.
- 3. Click the **Click here for Server Settings** link. The **Server Settings** window opens.
- 4. Set Use Port 443 to No.

Server Configuration		
Use port 443	No	
CRL Poll Time (min)	0	
Global TOS Copy	Off	
Global Replay Window Size, Packets(0Use Default)		

- 5. Click **OK**.
- 6. Click Send Changes and Activate.

Step 2. Configure SSL VPN General Service Settings

Enable the SSL VPN service and add the listening IP addresses.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN-Service > SSL-VPN.

- 2. Click **Lock**.
- 3. Set Enable SSL VPN to Yes.
- 4. (optional) Set **Enable CudaLaunch** to **yes**.
- 5. Click + to add a Listen IP.
- 6. Enter the IP address of the VPN service. e.g., 127.0.0.9

General Service Settings		
Enable SSL VPN	yes 💌	â
Enable CudaLaunch	yes 💌	Ô
Listen IPs	👻 😥 🕈 🛪 🔹 🙀	â
	127.0.0.9	
	4 III >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
Restrict to Strong Ciphers Only		Ô
Allow SSLv3		â

- 7. (recommended) Enable Restrict to Strong Ciphers Only.
- 8. Select the Identification Type:
 - Generated-Certificate The certificate and the private key is automatically created by the firewall.
 - Self-Signed-Certificate Click New to create a Self-Signed Private Key and then Edit to create the Self-Signed Certificate.

External-Certificate – Click Ex/Import to import the CA-signed External Certificate and the External-Signed

Private Key.		
Service Identification		
Identification Type	Generated-Certificate	
Self-Signed Private Key	New Key Ex/Import v No key present	â
Self-Signed Certificate	Show Edit No certificate present	â
External-Signed Private Key	New Key Ex/Import 💌 No key present	â
External-Signed Certificate	Show Ex/Import v No certificate present	â

9. Click Send Changes and Activate.

Step 3. Configure User Identity Access Control Policy

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Service > VPN-Service > SSL-VPN.

- 2. In the left menu, click Access Control Policies.
- 3. Click **Lock**.
- 4. Click + to add an Access Control Policy.
- 5. Enter the Name for the access control policy.
- 6. Click **OK**.
- 7. In the Access Control Policy section, select the Active check box.

Access Control Policy	
Active	Ē

8. In the Group Access section, click + to add Allowed Groups and Blocked Groups. Click x to remove the entry from the

table.

9. In Allowed Groups, either add an asterisk (*) to allow all groups, or enter one or more group names. Leaving the

Allowed Groups empty causes the Access Control Policy to block all authentication attempts.

10. In the Authentication section, click + to add an Authentication Scheme.

Authentication		
Authentication Schemes		🥢 💠 🗙 🍙 🔞 🗐
	Authentication Scheme	

11. Select Use Identity from the Authentication Scheme drop-down list.

Authentication Options		
Authentication Scheme	Use Identity	🔲 Other 🗐•

- 12. Click **OK**.
- 13. Click Send Changes and Activate.

Step 4. Configure Login to Log In with User Identity

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN-Service > SSL-VPN.

- 2. In the left menu, click **Login**.
- 3. Click **Lock**.
- 4. In the Login section, set the Identity Scheme to your preferred authentication method, e.g., MS-Active Directory.
- 5. Click + to add your access control policy to the list of **Access Control Policies**.

Login		
Identity Scheme	MS Active Directory	💌 🔲 Other 🗐 -
Access Control Policies		🕈 🗙 🗐
		l

6. From the pop-up menu, select the access control policy that you configured in Step 3 for **Use Identity**, i.e., ACCE01.

ACCE01		
Default		

- 7. Configure the following settings:
 - Use Max Concurrent Users Set to no.
 - Session Timeout (m) Set to 30. This setting must match with the timeout on the ELB.

Configuration		
Use Max. Concurrent Users	no	~ 🗐
Max. Concurrent Users	10	
Session Timeout [m]	30	Ē.
Deny Remember Me	no	✓ ∎•

8. (optional) Customize the login messages and logos:

Import a 200 x 66-pixel PNG or JPG image to customize the **Logo**.

- Enter a plain text Login Message. e.g., Welcome to the Barracuda NextGen Firewall SSL VPN.
- Enter an HTML Help Text.
- 9. Click Send Changes and Activate.

Step 5. (optional) Use Custom Cipher String

Configure a custom cipher string to be used by the SSL VPN service.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned

Services > VPN-Service > SSL-VPN.

- 2. In the left menu, click **Basic Setup**.
- 3. Click **Lock**.
- 4. In the left menu, expand **Configuration Mode** and click on **Switch to Advanced View**.
- 5. Disable Allow SSLv3.
- 6. Enable Restrict to Strong Ciphers Only.
- 7. Enter your custom SSL Cipher Spec string.

Restrict to Strong Ciphers Only)
Allow SSLv3	ú)
I SSL Cipher Spec	RSA:EDH:IEXP:INULL:+HIGH:-MEDIUM:-LOW:-SSLv2:-IDEA-CBC-SHA)
Strict SSL Security	Yes 🗸)
Read/Write Timeout (s)	30)
Log Level	0)

8. Set Strict SSL Security to yes.

This setting might break access for some older client SSL implementation. Disable if you experience problems when using older browsers.

9. Click Send Changes and Activate.

Step 6. Create Access Rules

Verify the the access rule CLOUD-SERVICE-VPN-ACCESS is present in the forwarding ruleset. If not, create the rule. Use the

following settings:

- Action Select App Redirest.
- Source Select Any.
- Service Select NGF-VPN-HTTPS.
- Destination Select the network object containing all firewall IPs.
- Redirection Enter the IP address of the VPN service. e.g., 127.0.0.9.

	RVICE-VPN-ACCESS [Rule]	CLOUD-SERVICE-VPN-ACCESS			
Views 🙁	🔄 App Redirect				
Rule		UDP 691 and TCP 443 to the VPN serv	UDP 691 and TCP 443 to the VPN service listening on the virtual server IP address.		
Advanced	rectional 📄 🔿	💍 🗌 Dynamic Rule	🕘 🗌 Deactivate Rule		
ICMP Handling	Source	Service	Destination		
Object Viewer 🙁	Any	V NGF-VPN-HTTPS	✓ All Firewall IPs ✓		
object viewer	0.0.0/0	Ref: HTTPS	Ref: Management IP		
Object Viewer		Ref: NGF-VPN	Ref: Service IPs		
			< >		
			Redirection		
			Local Address		
			127.0.0.9		
	Authenticated User	Policies			
Ar	Any	V IPS Policy			
		Default Policy	×		
		Application Policy			
		No AppControl			
		Schedule Always	~		
			~		
		QoS Band (Fwd) VoIP (ID 2)	10		
		QoS Band (Reply)	121		
		Like-Fwd	×		
			OK Cancel		

3.17.2 Troubleshooting

- If the **sslvpn** log contains the following line: http_listener: failed to listen on <IP address>@443 verify that no other service on the firewall is running on that port and that no Dst NAT access rules are forwarding TCP port 443 (HTTPS) traffic.
- Updating certificates requires the SSL VPN service to be restarted. To do this in an ASG, scale the ASG to a size of one.
 Then restart the VPN (SSL VPN) service. Then scale out, or wait for the scaling policies to scale your ASG out to the desired size.

