How to Configure an IPsec VPN to an AWS VPN Gateway with BGP

https://campus.barracuda.com/doc/43847091/

If you are using the Amazon Virtual Private Cloud, you can transparently extend your local network to the cloud by connecting both networks with a site-to-site IPsec VPN tunnel. The Amazon virtual private gateway uses two parallel IPsec tunnels to ensure constant connectivity. The subnets behind the VPN Gateway are propagated via BGP.

Additional Amazon AWS charges apply. For more information, see Amazon's monthly pricing calculator at http://calculator.s3.amazonaws.com/calc5.html.

In this article:

Before You Begin

- Create an Amazon Virtual Private Cloud (VPC).
 The local and remote (VPC) subnets must not overlap. E.g, If your local network is
10.0.1.0/24 do not use 10.0.0.0/16 for your VPC.

- Create at least one subnet in the VPC.
- Create and configure the Amazon Routing Table.

Step 1. Create the Amazon VPN Gateway

Step 1.1 Create a Virtual Private Gateway

The Amazon virtual private gateway is the VPN concentrator on the remote side of the IPsec VPN connection.

1. Go to the [Amazon VPC Management Console](https://aws.amazon.com/vpc).
2. In the left menu, click **Virtual Private Gateways**.
3. Click **Create Virtual Private Gateway**.
4. Enter the **Name tag** for the VPN gateway (e.g., Techlib Virtual Private Gateway).
5. Click **Yes, Create**.
6. Select the newly created virtual private gateway, and click **Attach to VPC**.
7. Select your VPC from the **VPC** list, and click **Yes, Attach**.

The virtual private gateway is now available.

Step 1.2. Add Your Customer Gateway Configuration

The Amazon customer gateway is your Barracuda NG Firewall on your end of the VPN connection. Specify your external IP address and routing type in the customer gateway configuration:

1. Go to the [Amazon VPC Management Console](https://aws.amazon.com/vpc).
2. In the left menu, click **Customer Gateway**.
3. Click **Create Customer Gateway**.
4. Enter the connection information for your Barracuda Firewall:
 - **Name Tag** – Enter a name for your device (e.g., My Barracuda NG Firewall).
 - **Routing** – Select **Dynamic**.
 - **IP Address** – Enter your external IP Address. To look up your external IP address, go to **CONTROL > Network**.
5. Click **Yes, Create**.

Your Barracuda NG Firewall is now configured in the AWS cloud and can be used to configure VPN connections.

Step 1.3. Create a VPN Connection

Create a VPN connection with the customer gateway and the virtual private gateway that you just created. Then download the VPN configuration file, because it contains all the necessary information for configuring the VPN connection on the Barracuda NG Firewall.

The Amazon VPN configuration file is different for every VPN connection.

1. Go to the [Amazon VPC Management Console](#).
2. In the left menu, click **VPN Connections**.
3. Click **Create VPN Connection**.
4. In the **Create VPN Connection** window, enter the configuration information for your VPN connection:
 - **Name tag** – Enter a name for your VPN connection (e.g., NG2AWSCloud).
- **Virtual Private Gateway** - Select the virtual private gateway created in [Step 1](#).
- **Routing Options** - Select **Dynamic (requires BGP)**.

5. Click **Yes, Create**.
6. Click **Download Configuration**.
7. Select generic vendor and platform settings for the configuration file:
 - **Vendor** - Select **Generic**.
 - **Platform** - Select **Generic**.
 - **Software** - Select **Vendor Agnostic**.

8. Click **Yes, Download**, and save the `vpn-.txt` file.

Amazon Web Services Virtual Private Cloud VPN Connection Configuration
==
AWS utilizes unique identifiers to manipulate the configuration
of a VPN Connection. Each VPN Connection is assigned a VPN Connection Identifier and is associated with two other identifiers, namely the Customer Gateway Identifier and the Virtual Private Gateway Identifier. Your VPN Connection ID: vpn-YOUR-VPN-CONNECTION-ID Your Virtual Private Gateway ID: vgw-YOUR-VIRTUAL-PRIVATE-GATEWAY-ID Your Customer Gateway ID: cgw-YOUR-CUSTOMER-GATEWAY-ID A VPN Connection consists of a pair of IPsec tunnel security associations (SAs). It is important that both tunnel security associations be configured. IPsec Tunnel #1

====== #1: Internet Key Exchange Configuration Configure the IKE SA as follows: - Authentication Method: Pre-Shared Key - Pre-Shared Key: YOUR-PRESHARED-KEY - Authentication Algorithm: sha1 - Encryption Algorithm: aes-128-cbc - Lifetime: 28800 seconds - Phase 1 Negotiation Mode: main - Perfect Forward Secrecy: Diffie-Hellman Group 2 #2: IPsec Configuration Configure the IPsec SA as follows: - Protocol: esp - Authentication Algorithm: hmac-sha1-96 - Encryption Algorithm: aes-128-cbc - Lifetime: 3600 seconds - Mode: tunnel - Perfect Forward Secrecy: Diffie-Hellman Group 2 IPsec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We recommend configuring DPD on your endpoint as follows: - DPD Interval: 10 - DPD Retries: 3 IPsec ESP (Encapsulating Security Payload) inserts additional headers to transmit packets. These headers require additional space, which reduces the amount of space available to transmit application data. To limit the impact of this behavior, we recommend configuring the following setup on your Customer Gateway: - TCP MSS Adjustment: 1387 bytes - Clear Don't Fragment Bit: enabled - Fragmentation: Before encryption #3: Tunnel Interface Configuration Your Customer Gateway must be configured with a tunnel interface that is associated with the IPsec tunnel. All traffic transmitted to the tunnel interface is encrypted and transmitted to the Virtual Private Gateway. The Customer Gateway and Virtual Private Gateway each have two addresses that relate to this IPsec tunnel. Each contains an outside address, upon which encrypted traffic is exchanged. Each also contains an inside address associated with the tunnel interface. The Customer Gateway outside IP address was provided when the Customer Gateway was created. Changing the IP address requires the creation of a new Customer Gateway. The Customer Gateway inside IP address should be configured on your tunnel interface. Outside IP Addresses: - Customer Gateway: YOUR-EXTERNAL-IP - Virtual Private Gateway: VIRTUAL-PRIVATE-NETWORK-EXTERNAL-IP Inside IP Addresses - Customer Gateway: 169.254.254.58/30 - Virtual Private Gateway: 169.254.254.57/30 Configure your tunnel to fragment at the optimal size: - Tunnel interface MTU: 1436 bytes #4: Border Gateway Protocol (BGP) Configuration: The Border Gateway Protocol (BGPv4) is used within the tunnel, between the inside IP addresses, to exchange routes from the VPC to your home network. Each BGP router has an Autonomous System Number (ASN). Your ASN was provided to AWS when the Customer Gateway was
created. BGP Configuration Options: - Customer Gateway ASN : 64555

Step 2. Configure IPsec Tunnels on the Barracuda NG Firewall

For each IPsec tunnel create a next-hop-interface and then configure two IPsec site-to-site VPN tunnel. Use the IP addresses provided in the Amazon generic VPN configuration file you downloaded at the end of Step 1.

Step 2.1. Create VPN Next-hop Interfaces

For each IPsec tunnel a VPN next-hop interface must be created. Use the IP addresses provided in the Amazon generic VPN configuration file you downloaded at the end of Step 1.

IPSec Tunnel #1

#3: Tunnel Interface Configuration

Inside IP Addresses
- Customer Gateway : 169.254.254.58/30
- Virtual Private Gateway : 169.254.254.57/30

Configure your tunnel to fragment at the optimal size:
- Tunnel interface MTU : 1436 bytes

IPSec Tunnel #2

#3: Tunnel Interface Configuration

Inside IP Addresses
- Customer Gateway : 169.254.254.62/30
- Virtual Private Gateway : 169.254.254.61/30

Configure your tunnel to fragment at the optimal size:
- Tunnel interface MTU : 1436 bytes

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned Services > VPN-Service > VPN Settings.
2. Click Lock.
3. Click on **Click here for Server Settings**.
4. Click on the **Advanced** tab.

5. Create a VPN next hop interface for each IPsec tunnel by clicking **Add** in the **VPN Next Hop Interface Configuration** section.
 1. In the **VPN Interface Properties** window enter:
 - **VPN Interface Index** – Enter a number between 0 and 99. Each interface index number must be unique. E.g., IPsec tunnel1: 10 and IPsec tunnel: 11
 - **MTU** – Enter 1436.
 - **IP Addresses** - Enter the **Inside IP Address** for the **Customer Gateway** provided by Amazon. E.g., IPsec tunnel1: 169.254.254.58/30, IPsec tunnel 2: 169.254.254.62/30
 2. Click **OK**.

6. Click **OK**.
7. Click **Send Changes** and **Activate**.

Step 2.2. Configure Two Site-to-Site IPsec Tunnels

Configure two site-to-site IPsec tunnels using the VPN next-hop interfaces. Make sure to use the correct IP addresses and corresponding next-hop interfaces listed in the Amazon generic VPN configuration file for each tunnel.
IPSec Tunnel #1

#1: Internet Key Exchange Configuration

Configure the IKE SA as follows:
- **Authentication Method**: Pre-Shared Key
- **Pre-Shared Key**: YOUR-PRESHARED-KEY
- **Authentication Algorithm**: sha1
- **Encryption Algorithm**: aes-128-cbc
- **Lifetime**: 28800 seconds
- **Phase 1 Negotiation Mode**: main
- **Perfect Forward Secrecy**: Diffie-Hellman Group 2

#2: IPSec Configuration

Configure the IPSec SA as follows:
- **Protocol**: esp
- **Authentication Algorithm**: hmac-sha1-96
- **Encryption Algorithm**: aes-128-cbc
- **Lifetime**: 3600 seconds
- **Mode**: tunnel
- **Perfect Forward Secrecy**: Diffie-Hellman Group 2

IPSec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We recommend configuring DPD on your endpoint as follows:
- **DPD Interval**: 10

#3: Tunnel Interface Configuration

Outside IP Addresses:
- **Customer Gateway**: YOUR-EXTERNAL-IP-ADDRESS
- **Virtual Private Gateway**: AMAZON-VPN-GATEWAY-IP-ADDRESS-TUNNEL-2

Configure your tunnel to fragment at the optimal size:
- **Tunnel interface MTU**: 1436 bytes

IPSec Tunnel #2

#1: Internet Key Exchange Configuration
Configure the IKE SA as follows:
- Authentication Method: Pre-Shared Key
- Pre-Shared Key: YOUR-PRESHARED-KEY
- Authentication Algorithm: sha1
- Encryption Algorithm: aes-128-cbc
- Lifetime: 28800 seconds
- Phase 1 Negotiation Mode: main
- Perfect Forward Secrecy: Diffie-Hellman Group 2

#2: IPSec Configuration
Configure the IPSec SA as follows:
- Protocol: esp
- Authentication Algorithm: hmac-sha1-96
- Encryption Algorithm: aes-128-cbc
- Lifetime: 3600 seconds
- Mode: tunnel
- Perfect Forward Secrecy: Diffie-Hellman Group 2

IPSec Dead Peer Detection (DPD) will be enabled on the AWS Endpoint. We recommend configuring DPD on your endpoint as follows:
- DPD Interval: 10

#3: Tunnel Interface Configuration
Configure your tunnel to fragment at the optimal size:
- Tunnel interface MTU: 1436 bytes

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned Services > VPN-Service > Site to Site.
2. Click on the IPSEC Tunnels tab.
3. Click Lock.
4. For each IPSec tunnel right click and click New IPSec tunnel.
 1. Enter the IPSec tunnel configurations:
 1. Enter a Name. E.g, IPSec Tunnel 1: IPSecAWSTunnel1 and for IPSec Tunnel 2: IPSecAWSTunnel2
 2. Enter the Phase 1 and Phase 2 settings:

<table>
<thead>
<tr>
<th>Encryption</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>AES</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure an IPsec VPN to an AWS VPN Gateway with BGP

1. **Hash Meth.**
 - SHA
2. **DH-Group**
 - Group 2
3. **Lifetime (sec)**
 - 28800
4. **Perfect Forward Secrecy**
 - Enable

Hash Meth.
- SHA
- SHA

DH-Group
- Group 2
- Group 2

Lifetime (sec)
- 28800
- 3600

Perfect Forward Secrecy
- Enable

1. In the **Local Networks** tab:
 - **Local IKE Gateway** - Enter your external IP address. If you are using a dynamic WAN interface enter 0.0.0.0
 - **Network Address** - Enter the **Inside IP Address** of the **Customer Gateway** (without the /30) and click **Add**. E.g., IPsec tunnel 1 169.254.254.58 and for IPsec tunnel 2 169.254.254.62.

2. In the **Remote Networks** tab:
 - **Remote IKE Gateway** - Enter the **Outside IP Address** of the Virtual Private Gateway.
 - **Network Address** - Enter the **Inside IP Address** of the Virtual Private Gateway (without the /30) and click **Add**. E.g., IPsec tunnel 1 169.254.254.57 and for IPsec tunnel 2 169.254.254.61.

3. In the **Peer Identification** tab:
 - **Shared Secret** - Enter the Amazon Pre-Shared Key.

4. In the **Advanced** tab:
 - **DPD intervals (s)** - Enter 10.
 - **Interface Index** - Enter the **VPN Next Hop Interface index** number you entered in step 1.1. E.g., IPsec tunnel 1 10 and for IPsec tunnel 2 11.
 - **VPN Next Hop Routing** - Enter the **Inside IP address** of the Virtual Private Gateway. E.g., IPsec tunnel 1 169.254.254.57 and for IPsec tunnel 2 169.254.254.61.

5. Click **OK**.
5. Click **Send Changes** and **Activate**.

You now have two VPN next-hop interfaces listed in the **Interfaces/IPs** section on the **CONTROL > Network** page and the VPN tunnels on the **CONTROL > VPN > STATUS**.
Step 3. Configure the BGP Service

Configure BGP routing to learn the subnets on the other side of the VPN tunnels. The BGP route propagated by the second (backup) IPsec tunnel is artificially elongated so traffic is routed per default over the first IP tunnel, as suggested by Amazon.

[...]IPSec Tunnel #1
===
=== [...] #4: Border Gateway Protocol (BGP) Configuration: [...] BGP
Configuration Options: - Customer Gateway ASN : YOUR-ASN-NUMBER (e.g., 64555) - Virtual Private Gateway ASN : 9059 - Neighbor IP Address : 169.254.254.57 - Neighbor Hold Time : 30 [...] IPSec Tunnel #2
===
=== [...] #4: Border Gateway Protocol (BGP) Configuration: [...] BGP

Step 3.1. Configure Routes to be Advertised via BGP

Only routes with the parameter Advertise set to yes will be propagated via BGP.
1. Go to CONFIGURATION > Configuration Tree > Box > Network.
2. Click Lock.
3. (optional) To propagate the management network, set Advertise Route to yes.
4. In the left menu click on Routing.
5. Double click on the Routes you want to propagate and set Advertise Route to yes.
6. Click OK.
7. Click Send Changes and Activate.

Step 3.2. Configure the BGP Routes

Configure the BGP setting for the BGP service on the Barracuda NG Firewall.

1. Go to CONFIGURATION > Configuration Tree > Box > Virtual Servers > your virtual server > Assigned Services > OSPF-RIP-BGP-Service > OSPF/RIP/BGP Settings.
2. Select yes from the Run BGP Router list.
3. Select advertise-learn from the Operations Mode list.
4. In the left menu, click BGP Router Setup.
5. Enter the AS Number (e.g., 64555).
6. In the Networks table, add the local network(s)(e.g., 10.10.200.0/24).
7. In the left menu, expand **Configuration Mode** and click **Switch to Advanced Mode**.
8. Click the **Set** button for the **Advanced Settings**. The **Advanced Settings** window opens.
9. Set the **Hold timer** to 30 seconds.
10. Set the **Keep Alive Timer** to 10 seconds.
11. Click **OK**.
12. Click **Send Changes** and **Activate**.

Step 3.3. Add a BGP Neighbor for each IPsec Tunnel

To dynamically learn the routing of the neighboring network, set up a BGP neighbor for each VPN next-hop interface.

1. In the left menu of the **OSPF/RIP/BGP Settings** page, click **Neighbor Setup IPv4**.
2. Click **Lock**.
3. For each IPsec tunnel click the plus sign (+) next to the **Neighbors** table, to add a new neighbor.
4. Enter a **Name** for the neighbor. E.g., AWS1 and AWS2
5. In the **Neighbors** window, configure the following settings in the **Usage and IP** section:
 - **Neighbor IPv4** – Enter the inside IP Address of the Virtual Private Gateway (remote address for the VPN next hop interface on the NG Firewall) E.g., IPsec Tunnel 1: 169.254.254.57 and for IPsec Tunnel 2 169.254.254.61.
 - **OSPF Routing Protocol Usage** – Select **no**.
 - **RIP Routing Protocol Usage** – Select **no**.
 - **BGP Routing Protocol Usage** – Select **yes**.
6. In the **BGP Parameters** section, configure the following settings:
 - **AS Number**: Enter the ASN for the remote network: 9059
 - **Update Source**: Select **Interface**.vprn
 - **Update Source Interface**: Enter the vprn interface for the IPsec tunnels. E.g., IPsec Tunnel 1: vprn10 and for IPsec Tunnel 2 vprn11.
Usage and IP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor IPv4</td>
<td>169.254.254.57</td>
</tr>
<tr>
<td>Active</td>
<td>yes</td>
</tr>
<tr>
<td>OSPF Routing Protocol Usage</td>
<td>no</td>
</tr>
<tr>
<td>RIP Routing Protocol Usage</td>
<td>no</td>
</tr>
<tr>
<td>BGP Routing Protocol Usage</td>
<td>yes</td>
</tr>
</tbody>
</table>

OSPF Parameters

- Neighbor Priority
- Dead Neighbor Poll Interval

BGP Parameters

- AS Number: 3659
- Description:
- Peer Group Affiliation:
- Update Source: Interface
- Update Source Interface: vpn10
- Update Source IPv4 Address:
- Peer Filtering For Input:
- Peer Filtering For Output:

NOTSET: No section present
7. Click **OK**.
8. Click **Send Changes** and **Activate**.

Step 3.4. Add an Access List for the Second IPsec Tunnel

1. In the left menu of the **OSPF/RIP/BGP Settings** page, click **Filter Setup IPv4**.
2. In the **Access List IPv4 Filters** section, click +.
3. Enter a **Name** for the Access List. E.g., 2ndGWIP. The **Access List IPv4** windows opens.
4. Click + to add an access list **Type**. The **Type** window opens.
5. Select **permit** from the **Type** dropdown.
6. Enter the **Inside IP** for the **Virtual Private Gateway** for IPsec Tunnel #2. E.g., 169.254.254.62
7. Click **OK**.
8. Click **OK**.
Step 3.5. Add a Filter Setup for the Second IPsec Tunnel

To make the route over the first IPsec tunnel the preferred route we will lengthen the AS-Path of the second tunnel.

1. In the left menu of the OSPF/RIP/BGP Settings page, click Filter Setup IPv4.
2. Click Lock.
3. In the Route Map IPv4 Filters section click on +. The Route Maps IPv4 window opens.
4. In the BGP Specific Conditions section click +. The Route Map Entry window opens.
5. In the Route Map Entry window, specify the following settings:
 - Sequence Number – Enter a unique sequence number (e.g., 1). This sequence number must be unique across all route maps. For additional entries iterate the sequence numbers.
 - Type – Select permit.
 - Match Condition – Select Gateway IP.
 - Gateway IP (Access List) – Select the access list for the listed created in Step 3.4.
 - Set Action – Select AS_Path.
 - Set addition to AS-Path – Enter Amazons ASN number 9059.
6. Click OK.
7. Click OK.
8. Click Send Changes and Activate.

Step 4. Create a Access Rule for VPN Traffic

To allow traffic to and from the VPN networks a pass access rule is needed. You also need to set the Clear DF bit and Force Maximum Segment Size settings according to the Amazon configuration file in the advanced firewall rule settings. You also need to set Reverse Interface (Bi-directional) to Any, to allow return traffic using a different VPN tunnel then was used to initiate the connection.

[...] IPSec ESP (Encapsulating Security Payload) inserts additional headers to transmit packets. These headers require additional space, which reduces the amount of space available to transmit application data. To limit the impact of this behavior, we recommend the following configuration on your Customer Gateway: - TCP MSS Adjustment : 1387 bytes - Clear Don't Fragment Bit : enabled [...]

1. Create a Pass firewall rule:
 - Bi-Directional – Enable.
 - Source – Select the local network(s) you are propagating via BGP.
 - Service – Select the service you want to have access to the remote network or ALL for complete access.
 - Destination – Select the remote VPC subnet(s).
 - Connection Method – Select No Src NAT.
2. In the left navigation, click on **Advanced**.

3. In the **TCP Policy** section set **Force MSS (Maximum Segment Size)** to 1387.

4. In the **Miscellaneous** section set **Clear DF Bit** to **Yes**.
5. In the **Dynamic Interface Handling** section set **Reverse Interface (Bi-directional)** to **Any**.

6. Click **OK**.
7. Move the firewall rule up in the rule list, so that it is the first rule to match the firewall traffic.
8. Click **Send Changes** and **Activate**.

You now have two IPsec VPN tunnels connecting your Barracuda NG to the Amazon AWS cloud. Per default the first IPsec tunnel is chosen. It may take some time for BGP to learn the new routes, in case of a failure.

IPsec Tunnels are connected

BGP Configuration (CONTROL > NETWORK > BGP)

AWS VPN status in the Amazon AWS management interface
Tunnel Details

<table>
<thead>
<tr>
<th>VPN Tunnel</th>
<th>IP Address</th>
<th>Status</th>
<th>Status Last Changed</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel 1</td>
<td>87.238.85.46</td>
<td>UP</td>
<td>2014-05-27 17:38 UTC+2</td>
<td>1 BGP ROUTES</td>
</tr>
<tr>
<td>Tunnel 2</td>
<td>87.238.85.42</td>
<td>UP</td>
<td>2014-05-27 17:38 UTC+2</td>
<td>1 BGP ROUTES</td>
</tr>
</tbody>
</table>
Figures

1. Amazon_VPN_Gateway.png
2. IPsecAWS01.png
3. IPsecAWS02.png
4. IPsecAWS03.png
5. IPsecAWS04.png
6. IPsecAWS05.png
7. next_hopVPN00.png
8. next_hopVPN01.png
9. IPsecTunnel01.png
10. IPsecTunnel02.png
11. next_hopVPN02.png
12. IPsecTunnel03.png
13. BGP00.png
14. BGP01.png
15. BGP02.png
16. BGP03.png
17. FW01.png
18. FW03.png
19. FW02.png
20. FW04.png
21. finished01.png
22. finished02.png
23. finished03.png

© Barracuda Networks Inc., 2023 The information contained within this document is confidential and proprietary to Barracuda Networks Inc. No portion of this document may be copied, distributed, publicized or used for other than internal documentary purposes without the written consent of an official representative of Barracuda Networks Inc. All specifications are subject to change without notice. Barracuda Networks Inc. assumes no responsibility for any inaccuracies in this document. Barracuda Networks Inc. reserves the right to change, modify, transfer, or otherwise revise this publication without notice.